Impedance Spectra (impedance + spectrum)

Distribution by Scientific Domains


Selected Abstracts


Physical Modeling and Electrodynamic Characterization of Dielectric Slurries by Impedance Spectroscopy (Part II)

JOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 6 2008
Vladimir Petrovsky
Electrical characterization of dielectric slurries, as 0,3 composite systems, can provide valuable information on the dielectric properties of suspended particles. A new approach developed in our laboratory is based on impedance spectroscopy measurements of the slurries containing dispersed dielectric powders. Dielectric constants of the particles are determined through analysis of the low-frequency section of the impedance spectra. It was shown previously that this approach allows accurate and reliable measurement of dielectric constant of particles (,: ,100,2000) using host liquids (,: ,10,65). This study addresses the validation of this new method with physical model experiments using millimeter-sized sintered BaTiO3 model samples suspended in the liquid. Impedance spectra of barium titanate powder slurries were compared with the spectra of the model samples containing macroscopic cubes prepared by sintering of the same starting powder. This comparison shows a good agreement between the impedance spectra of powder and bulk BaTiO3 and validates the reliability of the new method to determine the dielectric constant of particulate materials. [source]


Thin Yttrium-Stabilized Zirconia Electrolyte Solid Oxide Fuel Cells by Centrifugal Casting

JOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 12 2002
Jiang Liu
A centrifugal casting technique was developed for depositing thin 8-mol%-yttrium-stabilized zirconia (YSZ) electrolyte layers on porous NiO-YSZ anode substrates. After the bilayers were cosintered at 1400°C, dense pinhole-free YSZ coatings with thicknesses of ,25 ,m were obtained, while the Ni-YSZ retained porosity. After La0.6Sr0.4Co0.2Fe0.8O3 (LSCF)-Ce0.9Gd0.1O1.95 (GDC) or La0.8Sr0.2MnO3 (LSM)-YSZ cathodes were deposited, single SOFCs produced near-theoretical open-circuit voltages and power densities of ,1 W/cm2 at 800°C. Impedance spectra measured during cell tests showed that polarization resistances accounted for ,70%,80% of the total cell resistance. [source]


Mechanical and corrosion behaviour of a Ti-Al-Nb alloy after deformation at elevated temperatures

MATERIALS AND CORROSION/WERKSTOFFE UND KORROSION, Issue 12 2008
M. V. Popa
Abstract The mechanical properties of Ti6Al7Nb alloy deformed and heat treated at elevated temperatures were correlated with its microstructure and corrosion behaviour in Ringer (of different pH values: 2.49, 6.9 and 8.9) and Ringer,Brown solutions. Microstructural analysis revealed a Widmanstatten structure for the alloys deformed at 1100,°C (, field) and structure with , grains at 930,°C (,,+,, field). The thermo-mechanical processing improved the electrochemical behaviour of Ti6Al7Nb alloys, especially their passive state. Open circuit potential variations in time reflected more compact, stable, resistant passive films on the surface of the treated alloys. Open circuit potential gradients simulating the non-uniformities of pH along the implant surface have very low values that cannot generate galvanic corrosion. Corrosion rates and ion release are very much reduced. Impedance spectra were fitted with a two time-constants equivalent circuit for some alloys and with three time-constants equivalent circuit for other alloys. [source]


Modelling and parameter comparison of equivalent circuits on the basis of impedance measurements of stainless steels

MATERIALS AND CORROSION/WERKSTOFFE UND KORROSION, Issue 4 2006
M. Slemnik
Abstract In our former work [1] we have discussed the impedance of differently heat treated steels X20Cr13 in 0.1 M H2SO4, undergoing an active passive transition. Impedance spectra were interpreted in terms of a model by Armstrong [2, 3], describing the electrochemical reaction at interfaces with adsorbed intermediates. The present work was performed in order to study this phenomenon in more detail, with computer simulations of a new created and more convenient equivalent circuit in comparison with the former model. Computer simulations of equivalent circuits were also made in the region of passivity which was also continuation of our earlier work [4]. In this sense the entire study for these steels was completed by collating distinctive parameter values, demonstrating electrochemical characteristics of steel X20Cr13, undergoing different heat treatments in the active-passive and passive region. [source]


Optical and electrical studies on spray deposited ZnO thin films

CRYSTAL RESEARCH AND TECHNOLOGY, Issue 7 2007
P. P. Sahay
Abstract ZnO thin films were prepared by spray pyrolytic decomposition of zinc acetate onto a glass substrate. These films were analyzed for the optical and electrical properties. Optical studies show that in these films the electronic transition is of the direct transition type. The optical energy gap for the films of different thicknesses is estimated to be in the range 2.98 , 3.09 eV. Electrical studies indicate that the films exhibit thermally activated electronic conduction and the activation energies are found to be dependent on the film thickness. The complex impedance measurements were carried out over a wide range of frequencies at room temperature (300 K). All the impedance spectra contain only a single arc, but the arc has a non-zero intersection with the real axis in the high frequency region. Also, the arc has its centre lying below with the real axis which indicates the multirelaxation behavior of the films. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


Biosensor for Hepatitis B Virus DNA PCR Product and Electrochemical Study of the Interaction of Di(2,2,-bipyridine)osmium(III) with DNA

ELECTROANALYSIS, Issue 19 2004
Hongtao Zhao
Abstract The strategy for electrochemical detection of HBV DNA PCR product (181,bps) was designed by covalently immobilizing single-stranded HBV DNA on preoxidized glassy carbon electrode surface. The immobilization of single stranded DNA was verified by AC impedance spectra. The following hybridization reaction on surface was evidenced by electrochemical methods using [Os(bpy)2Cl2]+ as an electroactive indicator. The interactions of [Os(bpy)2Cl2]+ with calf thymus single and double stranded DNA immobilized on preoxidized glassy carbon electrodes were studied. [Os(bpy)2Cl2]+ could bind preferentially to the duplex DNA by intercalating to base pairs. The intrinsic binding constant of [Os(bpy)2Cl2]+ with calf thymus DNA was calculated to be 1.21×104,M,1. Using [Os(bpy)2Cl2]+ as an electrochemical hybridization indicator, the HBV DNA sensor has been used to detect qualitatively target HBV DNA in solution with high sensitivity and selectivity. [source]


Application of Electrochemical Impedance Spectroscopy for Fuel Cell Characterization: PEFC and Oxygen Reduction Reaction in Alkaline Solution,

FUEL CELLS, Issue 3 2009
N. Wagner
Abstract The most common method used to characterise the electrochemical performance of fuel cells is the recording of current/voltage U(i) curves. Separation of electrochemical and ohmic contributions to the U(i) characteristics requires additional experimental techniques like electrochemical impedance spectroscopy (EIS). The application of EIS is an approach to determine parameters which have proved to be indispensable for the characterisation and development of all types of fuel cell electrodes and electrolyte electrode assemblies [1]. In addition to EIS semi-empirical approaches based on simplified mathematical models can be used to fit experimental U(i) curves [2]. By varying the operating conditions of the fuel cell and by the simulation of the measured EIS with an appropriate equivalent circuit, it is possible to split the cell impedance into electrode impedances and electrolyte resistance. Integration in the current density domain of the individual impedance elements enables the calculation of the individual overpotentials in the fuel cell (PEFC) and the assignment of voltage loss to the different processes. In case of using a three electrode cell configuration with a reference electrode, one can directly determine the corresponding overvoltage. For the evaluation of the measured impedance spectra the porous electrode model of Göhr [3] was used. This porous electrode model includes different impedance contributions like impedance of the interface porous layer/pore, interface porous layer/electrolyte, interface porous layer/bulk, impedance of the porous layer and impedance of the pores filled by electrolyte. [source]


Physical Modeling and Electrodynamic Characterization of Dielectric Slurries by Impedance Spectroscopy (Part II)

JOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 6 2008
Vladimir Petrovsky
Electrical characterization of dielectric slurries, as 0,3 composite systems, can provide valuable information on the dielectric properties of suspended particles. A new approach developed in our laboratory is based on impedance spectroscopy measurements of the slurries containing dispersed dielectric powders. Dielectric constants of the particles are determined through analysis of the low-frequency section of the impedance spectra. It was shown previously that this approach allows accurate and reliable measurement of dielectric constant of particles (,: ,100,2000) using host liquids (,: ,10,65). This study addresses the validation of this new method with physical model experiments using millimeter-sized sintered BaTiO3 model samples suspended in the liquid. Impedance spectra of barium titanate powder slurries were compared with the spectra of the model samples containing macroscopic cubes prepared by sintering of the same starting powder. This comparison shows a good agreement between the impedance spectra of powder and bulk BaTiO3 and validates the reliability of the new method to determine the dielectric constant of particulate materials. [source]


The AC Conductivity of Liquid-Phase-Sintered Silicon Carbide

JOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 8 2007
Godfrey Sauti
Analysis of the AC conductivity, complex dielectric constant, and the resulting immittance spectra of liquid-phase-sintered silicon carbide (SiC) ceramics showed that for this system, the dominant experimental observations are due to a multicomponent grain-boundary phase and not due to SiC grains. This is confirmed by noting that the temperature dependence of the conductivity of the components, derived from the impedance spectra, is proportional to exp[,(T0/T)1/4] and not to exp[,C/T]. The electrical properties of some of the grain boundaries are also found to be excitation voltage dependent. Combining the electrical results, which are also found to depend on the method of preparation and heat treatment, with a Rietveld analysis allows the composition of the grain boundaries of the models to be deduced. [source]


Revisit to the Origin of Grain Growth Anomaly in Yttria-Doped Barium Titanate

JOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 8 2001
Jung-Kun Lee
In this study, the effect of atmosphere during calcining and sintering of Y2O3 -doped BaTiO3 was investigated to reveal the origin of the anomaly of grain growth and conductivity as a function of Y2O3 content. Samples with various atmospheric histories were prepared. Microstructural and electrical variations were observed using SEM, dielectric (,r vs T) and thermopower measuring techniques, and impedance spectroscopy. An abrupt decrease in grain growth and a transition from semiconducting to insulating behavior were observed when the Y2O3 concentration exceeded 0.3 mol% and the samples were heat-treated in an O2 atmosphere. In contrast, the samples treated under N2+ 5% H2 atmosphere revealed neither grain growth anomaly nor conductivity anomaly even though the Y2O3 concentration was much greater than 3 mol%. The undoped BaTiO3 samples also demonstrated increased average grain size with increased oxygen partial pressure. Therefore, it was suggested that the grain growth anomaly did not result from the formation of cation vacancies V,Ba or V,,Ti. To investigate the origin of the grain growth anomaly, the Curie temperature, concentration of free electrons, and impedance spectra were measured. The grain growth anomaly and conductivity anomaly were associated with abrupt changes in all the measurements. These abrupt changes could be explained by the partial incorporation of donor dopants. Consequently, the origin of the anomaly in the microstructure and electrical properties are discussed in terms of grain-boundary segregation of the donor dopant. [source]


Electrochemistry and XPS study of an imidazoline as corrosion inhibitor of mild steel in an acidic environment

MATERIALS AND CORROSION/WERKSTOFFE UND KORROSION, Issue 1 2009
O. Olivares-Xometl
Abstract The effect of 2-(2-heptadec-8-enyl-4,5-dihydro-imidazol-1-yl)-ethylamine on the corrosion behavior of mild steel in aqueous hydrochloric acid was investigated using weight loss measurements, polarization scans, electrochemical impedance, and X-ray photoelectron spectroscopy (XPS). The inhibition efficiencies and coverage degrees increased with the concentration of inhibitor but decreased proportionally with temperature. It appears that the steric hindrance of the aliphatic chain on the imidazoline ring adsorption may affect inhibitor efficiency. Polarization curves showed that the oleic imidazoline (OI) acted essentially as a mixed type inhibitor, in which the blocking of active sites occurred. As a result of film formation, impedance spectra revealed a considerable increase in the charge transfer resistance as indicated by the second capacitive loop. XPS depth profile analysis observed the presence of nitrogen and carbon species on the inhibitor film, which were associated to the OI. [source]


Testing procedure to obtain reliable potentiodynamic polarization curves on type 310S stainless steel in alkali carbonate melts

MATERIALS AND CORROSION/WERKSTOFFE UND KORROSION, Issue 4 2006
S. Frangini
Abstract Potentiodynamic polarization measurements have been employed to evaluate the anodic behavior of a type 310S stainless steel in the eutectic Li/K molten carbonate. In general, the electrochemical tests yield useful information to predict the stability of the oxide films formed on the surface at the initial period of corrosion, although some precaution is required in the testing procedure as the reproducibility of results is seen to be adversely affected by the passage of large currents. Especially when the steel is in a passive state, erratic results are easily observed if the corrosion layer is being damaged by uncontrolled large currents. This is because the acid-base properties of the melt are susceptible to deep changes by applied currents in the milli-ampere range resulting in hysteresis phenomena in the polarization plot. Hysteresis is caused, on one hand, by acidic dissolution of the passive layer at high anodic currents and, on the other hand, by increased melt basicity due to oxide ion build-up at high cathodic currents. An optimized testing procedure is therefore suggested that minimizes these effects by imposing a 2 mA/cm2 threshold current during polarization measurements. Moreover, the conditions for the applicability of the linear polarization technique to estimate kinetic parameters have been discussed in relationship with the corrosion mechanisms analysed by impedance spectra. It is concluded that the presence of diffusional impedance terms and formation of surface resistive films in molten carbonates may result in not reliable polarization resistance values obtained with the linear polarization. [source]


Noncovalent Assembly of Picket-Fence Porphyrins on Nitrogen-Doped Carbon Nanotubes for Highly Efficient Catalysis and Biosensing

CHEMISTRY - A EUROPEAN JOURNAL, Issue 13 2010
Wenwen Tu
Abstract A water-insoluble picket-fence porphyrin was first assembled on nitrogen-doped multiwalled carbon nanotubes (CNx MWNTs) through FeN coordination for highly efficient catalysis and biosensing. Scanning electron micrographs, Raman spectra, X-ray photoelectron spectra, UV/Vis absorption spectra, and electrochemical impedance spectra were employed to characterize this novel nanocomposite. By using electrochemical methods on the porphyrin at low potential in neutral aqueous solution, the presence of CNx MWNTs led to the direct formation of a high-valent iron(IV),porphyrin unit, which produced excellent catalytic activity toward the oxidation of sulfite ions. By using sulfite ions, a widely used versatile additive and preservative in the food and beverage industries, as a model, a highly sensitive amperometric biosensor was proposed. The biosensor showed a linear range of four orders of magnitude from 8.0×10,7 to 4.9×10,3,mol,L,1 and a detection limit of 3.5×10,7,mol,L,1 due to the highly efficient catalysis of the nanocomposite. The designed platform and method had good analytical performance and could be successfully applied in the determination of sulfite ions in beverages. The direct noncovalent assembly of porphyrin on CNx MWNTs provided a facile way to design novel biofunctional materials for biosensing and photovoltaic devices. [source]


Non-Corrosive, Non-Absorbing Organic Redox Couple for Dye-Sensitized Solar Cells

ADVANCED FUNCTIONAL MATERIALS, Issue 19 2010
Dongmei Li
Abstract A new colorless electrolyte containing an organic redox couple, tetramethylthiourea (TMTU) and its oxidized dimer tetramethylformaminium disulfide dication ([TMFDS]2+), is applied to dye-sensitized solar cells (DSCs). Advantages of this redox couple include its non-corrosive nature, low cost, and easy handling. More impressively, it operates well with carbon electrodes. The DSCs fabricated with a lab-made HCS-CB carbon counter-electrode can present up to 3.1% power conversion efficiency under AM 1.5 illumination of 100 mW·cm,2 and 4.5% under weaker light intensities. This result distinctly outperforms the identical DSCs with a Pt electrode. Corrosive experiments reveal that Al and stainless steel (SS) sheets are stable in the [TMFDS]2+/TMTU-based electrolyte. Its electrochemical impedance spectrum (EIS) is used to evaluate the influence of different counter-electrodes on the cell performance, and preliminary investigations reveal that carbon electrodes with large surface areas and ideal corrosion-inertness toward the sulfur-containing [TMFDS]2+/TMTU redox couple exhibit promise for application in iodine-free DSCs. [source]


Synthesis and characterization of a silicone resin with silphenylene units in Si-O-Si backbones

JOURNAL OF APPLIED POLYMER SCIENCE, Issue 2 2009
Mengqiu Jia
Abstract A silicone resin with silphenylene units in Si-O-Si backbones was synthesized by hydrolysis-polycondensation of 1,4-bis(hydroxydimethylsilyl)benzene (BHB) with chlorosilanes. The structure and property of this novel silicone resin were characterized by gel permeation chromatography (GPC), Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR), thermogarvimetric analysis (TG), scanning electron microscope (SEM), and electrochemical impedance spectrum (EIS). This silicone resin could be applied as the film forming material of coating when it is prepared under the condition of R/Si, Ph/R, and the content of silphenylene units being 1.3, 0.5, and 10 mol %, respectively. GPC, IR, and NMR results show that the silphenylene units have been incorporated into the polymer of silicone resin. The TG analysis indicates that this novel silicone resin has good heat resistance with the onset degradation temperature of 500.3°C and residual weight of 85.6% at 900°C. SEM results demonstrate that the silicone resin with silphenylene units can form full and uniform films, and its surface morphology of clear paints were not damaged by heat below 350°C. EIS analysis reveals that clear paints of the silicone resin with silphenylene units have good resistance to corrosion. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009 [source]