Impedance Measurements (impedance + measurement)

Distribution by Scientific Domains
Distribution within Polymers and Materials Science

Kinds of Impedance Measurements

  • ac impedance measurement


  • Selected Abstracts


    Evaluation of Process-Induced Dimensional Changes in the Membrane Structure of Biological Cells Using Impedance Measurement

    BIOTECHNOLOGY PROGRESS, Issue 3 2002
    Alexander Angersbach
    The impact of high intensity electric field pulses, high hydrostatic pressure, and freezing-thawing on local structural changes of the membrane was determined for potato, sugar beet tissue, and yeast suspensions. On the basis of the electrophysical model of cell systems in biological tissues and suspensions, a method was derived for determining the extent of local damage of cell membranes. The method was characterized by an accurate and rapid on-line determination of frequency-dependent electrical conductivity properties from which information on microscopic events on cellular level may be deduced. Evaluation was based on the measurement of the relative change in the sampleapos;s impedance at characteristically low ( fl) and high ( fh) frequencies within the ,-dispersion range. For plant and animal cells the characteristic frequencies were fl , 5 kHz and fh > 5 MHz and for yeast cells in the range fl , 50 kHz and fh > 25 MHz. The observed phenomena were complex. The identification of the underlying mechanisms required consideration of the time-dependent nature of the processing effects and stress reactions of the biological systems, which ranged from seconds to several hours. A very low but significantly detectable membrane damage (0.004% of the total area) was found after high hydrostatic pressure treatment of potato tissue at 200 MPa. The membrane rupture in plant tissue cells was higher after freezing and subsequent thawing (0.9% of total area for potato cells and 0.05,0.07% for sugar beet cells determined immediately after thawing), which increased substantially during the next 2 h. [source]


    On Selection of the Perturbation Amplitude Required to Avoid Nonlinear Effects in Impedance Measurements

    ISRAEL JOURNAL OF CHEMISTRY, Issue 3-4 2008
    Bryan Hirschorn
    Numerical simulations of electrochemical systems were used to explore the influence of large-amplitude potential perturbations on the measured impedance response. The amplitude of the input potential perturbation used for impedance measurements, normally fixed at a value of 10 mV for all systems, should instead be adjusted for each experimental system. Guidelines are developed for selection of appropriate perturbation amplitudes. A characteristic transition frequency is defined that can be used to tailor a frequency-dependent input signal to optimize signal-to-noise levels while maintaining a linear response. [source]


    An investigation into the relationship between apical root Impedance and canal anatomy

    INTERNATIONAL ENDODONTIC JOURNAL, Issue 9 2008
    S. M. Ardeshna
    Aim, To investigate a possible relationship between apical root impedance and canal anatomy. Methodology, Twenty-three roots from human extracted teeth (mostly single rooted but also from molars) with different apical anatomy were selected. The apical anatomy was initially classified by staining the root tip to identify number of canal exits; after impedance measurements, the anatomy was confirmed by staining and clearing the dentine. The roots were divided into two groups; 12 had simple (S) anatomy (Vertucci type 1 with a single exit) and 11 had complex (C) anatomy (various Vertucci canal types with multiple exist). Impedance measurements were taken using a frequency response analyser at seven levels in the root (0.0, 0.5, 1.0, 2.0, 3.0, 4.0 and 5.0 mm short of the apical terminus) at 14 frequencies ranging from 1120 to 100 000 Hz. Care was taken to control the temperature and other variables that could confound measurement accuracy. The impedance characteristics of individual roots were compared with 37 equivalent circuits (based on a pool created from a previous study); the best fitting equivalent circuit was selected. The equivalent circuits were used as the single outcome measure describing the impedance characteristics and correlated with the canal anatomy (S/C). Generalized estimating equations were used to perform logistic regression to analyse the data. Results, Canal anatomy had a significant (P = 0.046) effect on the equivalent circuit model. One circuit (model 10) was found to be the commonest and occurred significantly more commonly in the simple canals. The odds of prevalence of circuit model 10 were 2.2 times (odds ratio 2.17, 95% confidence interval 1.01,4.63) higher in canals with simple anatomy compared with canals with complex anatomy. Conclusions, Canal anatomy had a significant effect on the equivalent circuit describing its impedance characteristics. It should be possible to use impedance spectroscopy to clinically predict and image apical canal complexities. [source]


    Impedance measurements on oxide films on aluminium obtained by pulsed tensions

    MATERIALS AND CORROSION/WERKSTOFFE UND KORROSION, Issue 1 2003
    K. Belmokre
    Anodisation; Elektrochemische Impedanzspektroskopie (EIS); pulsierende Spannung; Alterung von Oxidfilmen Abstract We have performed this study on oxide films sealed or not in boiling water. The films are first obtained on type 1050 A aluminium substrat by pulsed tensions anodizing technique, in a sulfuric acid solution. Afterwards the, Electrochemical Impedance Spectroscopy (EIS) is employed to appreciate the films behaviour in a neutral solution of 3.5% K2SO4, in which the interface processes interest only the ageing phenomenon of the oxide films and not their corrosion. We have also attempted a correlation between pulse parameters of anodization and the electrical parameters characterizing these films. The sealing influence on ageing has been studied as well. For all films, ageing is appreciated using impedance diagrams evolution versus time. The results show: , the existence of two capacitive loops confirming the presence of two oxide layers characteristic of oxide films obtained in a sulfuric acid medium. The first loop, at high frequencies, is related to the external porous layer and the second one, at lower freqencies, is related to the internal barrier layer. , the thickness of the barrier layer varies between 25 and 40 nm in relation with the electrical pulse parameters. , the sealing acts favorably against anodic oxide films ageing. Impedanzmessungen an durch pulsierende Spannung erzeugten Oxidfilmen auf Aluminium Die vorliegenden Untersuchungen wurden an versiegelten und nicht versiegelten Oxidfilmen in kochendem Wasser durchgeführt. Die Filme wurden zuerst auf Aluminiumsubstrat des Typs 1050A durch anodische Technik mit pulsierender Spannung in einer Schwefelsäurelösung erzeugt. Anschließend wurde die elektrochemische Impedanzspektroskopie eingesetzt, um das Filmverhalten in einer neutralen 3,5% K2SO4 -Lösung zu beurteilen, wobei bezüglich der Grenzflächenprozesse nur das Alterungsphänomen der Oxidfilme und nicht ihr Korrosionsverhalten interessierte. Es wurde versucht, eine Korrelation zwischen den Pulsparametern der Anodisierung und den elektrischen Parametern, die diese Filme charakterisieren, zu finden. Ebenfalls wurde der Versiegelungseinfluss auf die Alterung untersucht. Für alle Filme wurde die Alterung mit Hilfe der Entwicklung von Impedanzdiagrammen über die Zeit beurteilt. Die Ergebnisse zeigen: , die Existenz von zwei kapazitiven Schleifen, die die Anwesenheit von zwei Oxidschichten bestätigen, was charakteristisch ist für Oxidfilme, die in einer Schwefelsäurelösung erzeugt wurden. Die erste Schleife, bei hohen Frequenzen, bezieht sich auf die äußere poröse Schicht und die zweite, bei niedrigeren Frequenzen, bezieht sich auf die innere Barriereschicht , die Dicke der Barriereschicht variiert zwischen 25 und 40 nm, abhängig von den elektrischen Pulsparametern , die Versiegelung wirkt günstig gegenüber der Alterung des anodischen Oxidfilms. [source]


    Applications of PAT-Process Analytical Technology in Recombinant Protein Processes with Escherichia coli

    ENGINEERING IN LIFE SCIENCES (ELECTRONIC), Issue 2 2008
    C. Kaiser
    Abstract Monitoring of bioprocesses and thus observation and identification of such processes is one of the main aims of bioprocess engineering. It is of vital importance in bioprocess development to improve the overall productivity by avoiding unintentional limitations to ensure not only optimal process conditions but also the observation of established production processes. Furthermore, reproducibility needs to be improved and final product quality and quantity be guaranteed. Therefore, an advanced monitoring and control system has been developed, which is based on different in-line, on-line and at-line measurements for substrates and products. Observation of cell viability applying in-line radio frequency impedance measurement and on-line determination of intracellular recombinant target protein using the reporter protein T-Sapphire GFP based on in-line fluorescence measurement show the ability for the detection of critical process states. In this way, the possibility for the on-line recognition of optimal harvest times arises and disturbances in the scheduled process route can be perceived. [source]


    Impact of nadir lower oesophageal sphincter pressure on bolus clearance assessed by combined manometry and multi-channel intra-luminal impedance measurement

    NEUROGASTROENTEROLOGY & MOTILITY, Issue 1 2010
    N. Q. Nguyen
    Abstract, This study aimed to assess the relationship between nadir lower oesophageal sphincter pressure (LOSP) and wave amplitude (WA) in oesophageal bolus clearance. Concurrent oesophageal manometry and impedance were performed in 146 subjects [41 healthy, 24 non-obstructive dysphagia (NOD) and 81 gastro-oesophageal reflux (GOR)]. Patients with achalasia and diffuse oesophageal spasm were excluded. Swallow responses were categorized by nadir LOSP. For each category of nadir LOSP, WA at the distal 2 recording sites were grouped into bins of 10 mmHg and the proportion of waves in each bin associated with a normal bolus presence time (BPT) was determined. Nadir LOSP, distal BPT, total bolus transit time and the proportion of impaired oesophageal clearance in patients with NOD were greater than those of healthy subjects and patients with GOR. Overall, responses with impaired oesophageal clearance had significantly lower WA (54 ± 1 vs 81 ± 1 mmHg; P < 0.0001) and higher nadir LOSP (2.7 ± 0.4 vs 1.0 ± 0.1 mmHg, P < 0.001). For each level of nadir LOSP, there was a direct relationship between distal WA and successful bolus clearance of both liquid and viscous boluses from the distal oesophagus. As nadir LOSP increased, the relationship between WA and bolus clearance shifted to the right and higher amplitudes were required to achieve the same effectiveness of clearance. Hypotensive responses with nadir LOSP ,3 mmHg were less likely to clear than those with nadir LOSP <3 mmHg, for both liquid (7/29 vs 162/276; P < 0.001) or viscous boluses (11/46 vs 176/279; P < 0.0001). Nadir LOSP is an important determinant of bolus clearance from the distal oesophagus, particularly in patients with NOD. [source]


    Subthreshold Test Pulses Versus Low Energy Shock Delivery to Estimate High Energy Lead Impedance in Implanted Cardioverter Defibrillator Patients

    PACING AND CLINICAL ELECTROPHYSIOLOGY, Issue 1p2 2003
    DIRK VOLLMANN
    VOLLMANN, D., et al.: Subthreshold Test Pulses Versus Low Energy Shock Delivery to Estimate High Energy Lead Impedance in Implanted Cardioverter Defibrillator Patients. The high energy lead impedance is valuable for detecting lead failure in ICDs, but until recently shock delivery was necessary for high energy impedance measurement. This study compared the use of subthreshold test pulses and low energy test shocks to estimate the high energy impedance. Immediately after implantation of Ventak Prizm ICDs in 29 patients, the lead impedance was measured with five subthreshold (0.4 ,J) test pulses, 5 low energy (1.1 J) shocks, and two to three high energy(16 ± 4.5 J)shocks. The mean impedances measured using high energy shocks, low energy shocks, and subthreshold pulses were42.0 ± 7.3 ,, 46.5 ± 8.1 ,, and42.4 ± 7.1 ,, respectively. The impedances measured using high and low energy shocks differed significantly(P <0.0001), while those obtained by high energy shocks and low energy pulses did not(P = 0.63). According to the Pearson correlation coefficient, the impedance measurements with subthreshold pulses and low energy shocks were both closely correlated(P < 0.0001)with impedance values determined with high energy shocks. However, while the impedance values tended to be higher when measured with low energy shocks, the concordance correlation coefficient (c) was higher for subthreshold test pulse versus high energy shock(c = 0.92)than for low versus high energy shock(c = 0.73). Furthermore, the intraindividual variability of impedance measurements was lower with subthreshold pulse measurements than with low energy shocks. Compared with low energy shocks, impedance measurement with subthreshold pulses has higher reproducibility and a higher correlation with the impedance obtained by high energy shock delivery. Safe and painless high energy impedance estimation with subthreshold pulses might, therefore, help to detect ICD lead failure during routine follow-up. (PACE 2003; 26:[Pt. II]:457,460) [source]


    Clinical Use of Intracardiac Impedance: Current Applications and Future Perspectives

    PACING AND CLINICAL ELECTROPHYSIOLOGY, Issue 4 2001
    WAYNE ARTHUR
    ARTHUR, W., et al.: Clinical Use of Intracardiac Impedance: Current Applications and Future Perspectives. For over 40 years the measurement of intracardiac impedance has been proposed as a method of assessing the contractile state of the heart muscle. This technique requires the positioning of one or more intracavitary electrodes and the generation of an electric field from an alternating current source. Variations in the calculated impedance signal reflect changes in the ventricular blood pool volume adjacent to the electrodes. Intracardiac impedance measurement has been successfully developed as a research tool to assess myocardial contractility, and from this, clinical uses have evolved. Commercial rate responsive pacing systems use intracardiac impedance to assess the inotropic state of the heart. Further development of this technology might allow hemodynamic discrimination of cardiac arrhythmias. [source]


    Real time monitoring of drug metabolic enzyme response inside human hepatoma GS-3A4-HepG2 cells by means of electrochemical impedance measurement

    POLYMERS FOR ADVANCED TECHNOLOGIES, Issue 5 2004
    Masaaki Kobayashi
    Abstract Cytochrome P-450s (CYPs) are important biopolymers for the maintenance of cellular function. If metabolic activity of the CYP in the cells can be estimated, so can the function of metabolism, which is closer to the organism. In this research, the method of measuring the drug metabolic activity inside the cell by making use of an electrochemical technique was examined. Human hepatoma GS-3A4-HepG2 cells of which the cytochrome P-4503A4 (CYP3A4) drug metabolic activity is found to be the same as that of primary hepatocytes were used in the experiment. The GS-3A4-HepG2 cells were cultured on an indium-tin oxide (ITO) electrode until they became confluent. Substrate testosterone and inhibitor ketoconazole of CYP3A4 were exposed to cells cultured on an ITO electrode, and the reaction was observed by noting the electrochemical impedance measurement. Impedance was decomposed into the resistance component and the reactance component, and each was examined in detail. As a result, according to testosterone concentration change, there was a remarkable time change in the reactance component. A similar impedance measurement was done by using human hepatoma HepG2 cells in which the drug metabolic activity had extremely decreased. Nevertheless, no time change in the reactance component that was noticed in GS-3A4-HepG2 cells was observed. Next, the amount of metabolite in the solution after impedance measurement was measured by means of liquid chromatography-tandem mass spectroscopy (LC-MS/MS). In the experiment with GS-3A4-HepG2 cells, a testosterone concentration-dependent correlation was observed between the reactance component change and the amount of metabolite. But, in the impedance measurement by ketoconazole, the change in reactance components was not observed in either the GS-3A4-HepG2 cells or the HepG2 cells. Ketoconazole and the heme iron in CYP3A4 effect the coordination bond, but ketoconazole was not metabolized by CYP3A4. It was confirmed that the time change in the reactance component which was caused by the testosterone was detected neither in the cells that take up the substrate, nor in the coordination bond between the CYP enzyme and the drug. Therefore, the time change in the remarkable reactance component observed by this electrochemical impedance measurement is dependent on drug metabolic activity. An electrochemical drug metabolic activity measuring method with the human hepatoma GS-3A4-HepG2 cells was able to be established. Copyright © 2004 John Wiley & Sons, Ltd. [source]


    Probing Biomolecular Interactions at Conductive and Semiconductive Surfaces by Impedance Spectroscopy: Routes to Impedimetric Immunosensors, DNA-Sensors, and Enzyme Biosensors

    ELECTROANALYSIS, Issue 11 2003
    Eugenii Katz
    Abstract Impedance spectroscopy is a rapidly developing electrochemical technique for the characterization of biomaterial-functionalized electrodes and biocatalytic transformations at electrode surfaces, and specifically for the transduction of biosensing events at electrodes or field-effect transistor devices. The immobilization of biomaterials, e.g., enzymes, antigens/antibodies or DNA on electrodes or semiconductor surfaces alters the capacitance and interfacial electron transfer resistance of the conductive or semiconductive electrodes. Impedance spectroscopy allows analysis of interfacial changes originating from biorecognition events at electrode surfaces. Kinetics and mechanisms of electron transfer processes corresponding to biocatalytic reactions occurring at modified electrodes can be also derived from Faradaic impedance spectroscopy. Different immunosensors that use impedance measurements for the transduction of antigen-antibody complex formation on electronic transducers were developed. Similarly, DNA biosensors using impedance measurements as readout signals were developed. Amplified detection of the analyte DNA using Faradaic impedance spectroscopy was accomplished by the coupling of functionalized liposomes or by the association of biocatalytic conjugates to the sensing interface providing biocatalyzed precipitation of an insoluble product on the electrodes. The amplified detections of viral DNA and single-base mismatches in DNA were accomplished by similar methods. The changes of interfacial features of gate surfaces of field-effect transistors (FET) upon the formation of antigen-antibody complexes or assembly of protein arrays were probed by impedance measurements and specifically by transconductance measurements. Impedance spectroscopy was also applied to characterize enzyme-based biosensors. The reconstitution of apo-enzymes on cofactor-functionalized electrodes and the formation of cofactor-enzyme affinity complexes on electrodes were probed by Faradaic impedance spectroscopy. Also biocatalyzed reactions occurring on electrode surfaces were analyzed by impedance spectroscopy. The theoretical background of the different methods and their practical applications in analytical procedures were outlined in this article. [source]


    Nutritional Risk among Elderly Rural Midwestern Women

    FAMILY & CONSUMER SCIENCES RESEARCH JOURNAL, Issue 1 2000
    Leslee K. Pollina
    Nutritional risk in relation to depression and eating disorder symptoms was assessed among a sample of rural, elderly Midwestern women. Thirty-seven community-dwelling women (M age = 72.37, SD = 16.66) were recruited from senior center nutrition sites and other venues. Body mass index (BMI) was derived from bioelectric impedance measurements, and participants completed several questionnaires including the Level I Nutrition Screen, the Beck Depression Inventory, and the Eating Attitudes Test (EAT). Results indicated that 72% of participants had BMI scores outside the healthy range for older adults, but they were more likely to be overweight than underweight. Other areas of nutritional concern were identified. Several nutritional risk items were associated with eating disorder symptoms and with higher depression scores. However, in an elderly population, EAT items may reflect health-related as well as eating disorder symptoms. The need for comprehensive nutritional evaluations involving psychosocial and environmental factors is discussed. [source]


    Enhanced-Light-Harvesting Amphiphilic Ruthenium Dye for Efficient Solid-State Dye-Sensitized Solar Cells

    ADVANCED FUNCTIONAL MATERIALS, Issue 11 2010
    Mingkui Wang
    Abstract A ruthenium sensitizer (coded C101, NaRu (4,4,-bis(5-hexylthiophen-2-yl)-2,2,-bipyridine) (4-carboxylic acid-4,-caboxylate-2,2,-bipyridine) (NCS)2) containing a hexylthiophene-conjugated bipyridyl group as an ancillary ligand is presented for use in solid-state dye-sensitized solar cells (SSDSCs). The high molar-extinction coefficient of this dye is advantageous compared to the widely used Z907 dye, (NaRu (4-carboxylic acid-4,-carboxylate) (4,4,-dinonyl-2,2,-bipyridine) (NCS)2). In combination with an organic hole-transporting material (spiro-MeOTAD, 2,2,,7,7,-tetrakis-(N,N -di- p -methoxyphenylamine) 9, 9,-spirobifluorene), the C101 sensitizer exhibits an excellent power-conversion efficiency of 4.5% under AM 1.5 solar (100 mW cm,2) irradiation in a SSDSC. From electronic-absorption, transient-photovoltage-decay, and impedance measurements it is inferred that extending the ,-conjugation of spectator ligands induces an enhanced light harvesting and retards the charge recombination, thus favoring the photovoltaic performance of a SSDSC. [source]


    Synthesis, Structure and Electrical Properties of Mo-doped CeO2,Materials for SOFCs

    FUEL CELLS, Issue 5 2009
    Q. Li
    Abstract In this paper, we report the synthesis, structure and electrical conductivity of Mo-doped compounds with a nominal chemical formula of Ce1,xMoxO2+, (x,=,0.05, 0.07, 0.1) (CMO). The formation of fluorite-like structure with a small amount of Ce8Mo12O49 impurity (JCPDS Card No. 31-0330) was confirmed using a powder X-ray diffraction (PXRD). The fluoride-type structure was retained under wet H2 and CH4 atmospheres at 700 and 800,°C, while diffraction peaks due to metal Mo were observed in dry H2 under the same condition. AC impedance measurements showed that the total conductivity increases with increasing Mo content in CMO, and among the investigated samples, Ce0.9Mo0.1O2+, exhibited the highest electrical conductivity with a value of 2.8,×,10,4 and 5.08,×,10,2 S cm,1 at 550,°C in air and wet H2, respectively. The electrical conductivity was found to be nearly the same, especially at high temperatures, in air, O2 and N2. Chemical compatibility of Ce0.9Mo0.1O2+, with 10,mol-% Y2O3 stabilised ZrO2 (YSZ) and Ce0.9Gd0.1O1.95 (CGO) oxide ion electrolytes in wet H2 was evaluated at 800,1,000,°C, using PXRD and EDX analyses. PXRD showed that CMO was found to react with YSZ electrolyte at 1,000,°C. The area specific polarisation resistance (ASPR) of Ce0.9Mo0.1O2+, on YSZ was found to be 8.58,ohm,cm2 at 800,°C in wet H2. [source]


    Controllable Molecular Doping and Charge Transport in Solution-Processed Polymer Semiconducting Layers

    ADVANCED FUNCTIONAL MATERIALS, Issue 12 2009
    Yuan Zhang
    Abstract Here, controlled p-type doping of poly(2-methoxy-5-(2,-ethylhexyloxy)- p -phenylene vinylene) (MEH-PPV) deposited from solution using tetrafluoro-tetracyanoquinodimethane (F4-TCNQ) as a dopant is presented. By using a co-solvent, aggregation in solution can be prevented and doped films can be deposited. Upon doping the current,voltage characteristics of MEH-PPV-based hole-only devices are increased by several orders of magnitude and a clear Ohmic behavior is observed at low bias. Taking the density dependence of the hole mobility into account the free hole concentration due to doping can be derived. It is found that a molar doping ratio of 1 F4-TCNQ dopant per 600 repeat units of MEH-PPV leads to a free carrier density of 4,×,1022,m,3. Neglecting the density-dependent mobility would lead to an overestimation of the free hole density by an order of magnitude. The free hole densities are further confirmed by impedance measurements on Schottky diodes based on F4-TCNQ doped MEH-PPV and a silver electrode. [source]


    Capacity Fading Mechanism in All Solid-State Lithium Polymer Secondary Batteries Using PEG-Borate/Aluminate Ester as Plasticizer for Polymer Electrolytes

    ADVANCED FUNCTIONAL MATERIALS, Issue 6 2009
    Fuminari Kaneko
    Abstract Solid-state lithium polymer secondary batteries (LPB) are fabricated with a two-electrode-type cell construction of Li|solid-state polymer electrolyte (SPE)|LiFePO4. Plasticizers of poly(ethylene glycol) (PEG)-borate ester (B-PEG) or PEG-aluminate ester (Al-PEG) are added into lithium-conducting SPEs in order to enhance their ionic conductivity, and lithium bis-trifluoromethansulfonimide (LiTFSI) is used as the lithium salt. An improvement of the electrochemical properties is observed upon addition of the plasticizers at an operation temperature of 60,°C. However, a decrease of discharge capacities abruptly follows after tens of stable cycles. To understand the origin of the capacity fading, electrochemical impedance techniques, ex-situ NMR and scanning electron microscopy (SEM)/energy dispersive X-ray spectroscopy (EDS) techniques are adopted. Alternating current (AC) impedance measurements indicate that the decrease of capacity retention in the LPB is related to a severe increase of the interfacial resistance between the SPE and cathode. In addition, the bulk resistance of the SPE film is observed to accompany the capacity decay. Ex situ NMR studies combined with AC impedance measurements reveal a decrease of Li salt concentration in the SPE film after cycling. Ex situ SEM/EDS observations show an increase of concentration of anions on the electrode surface after cycling. Accordingly, the anions may decompose on the cathode surface, which leads to a reduction of the cycle life of the LPB. The present study suggests that a choice of Li salt and an increase of transference number is crucial for the realization of lithium polymer batteries. [source]


    An investigation into the relationship between apical root Impedance and canal anatomy

    INTERNATIONAL ENDODONTIC JOURNAL, Issue 9 2008
    S. M. Ardeshna
    Aim, To investigate a possible relationship between apical root impedance and canal anatomy. Methodology, Twenty-three roots from human extracted teeth (mostly single rooted but also from molars) with different apical anatomy were selected. The apical anatomy was initially classified by staining the root tip to identify number of canal exits; after impedance measurements, the anatomy was confirmed by staining and clearing the dentine. The roots were divided into two groups; 12 had simple (S) anatomy (Vertucci type 1 with a single exit) and 11 had complex (C) anatomy (various Vertucci canal types with multiple exist). Impedance measurements were taken using a frequency response analyser at seven levels in the root (0.0, 0.5, 1.0, 2.0, 3.0, 4.0 and 5.0 mm short of the apical terminus) at 14 frequencies ranging from 1120 to 100 000 Hz. Care was taken to control the temperature and other variables that could confound measurement accuracy. The impedance characteristics of individual roots were compared with 37 equivalent circuits (based on a pool created from a previous study); the best fitting equivalent circuit was selected. The equivalent circuits were used as the single outcome measure describing the impedance characteristics and correlated with the canal anatomy (S/C). Generalized estimating equations were used to perform logistic regression to analyse the data. Results, Canal anatomy had a significant (P = 0.046) effect on the equivalent circuit model. One circuit (model 10) was found to be the commonest and occurred significantly more commonly in the simple canals. The odds of prevalence of circuit model 10 were 2.2 times (odds ratio 2.17, 95% confidence interval 1.01,4.63) higher in canals with simple anatomy compared with canals with complex anatomy. Conclusions, Canal anatomy had a significant effect on the equivalent circuit describing its impedance characteristics. It should be possible to use impedance spectroscopy to clinically predict and image apical canal complexities. [source]


    Dielectric Relaxation in CaO,Bi2O3,B2O3 Glasses

    INTERNATIONAL JOURNAL OF APPLIED CERAMIC TECHNOLOGY, Issue 2010
    Koushik Majhi
    Glasses in the system CaO,Bi2O3,B2O3 (in molar ratio) have been prepared using melt-quenching route. Ion transport characteristics were investigated for this glass using electric modulus, ac conductivity and impedance measurements. The ac conductivity was rationalized using Almond,West power law. Dielectric relaxation has been analyzed based on the behavior of electric modulus behavior. The activation energy associated with the electrical relaxation determined from the electric modulus spectra was found to be 1.76 eV, close to that the activation energy for dc conductivity (1.71 eV) indicating that the same species took part in both the processes. The stretched exponent , (0.5,0.6) is invariant with temperature for the present glasses. [source]


    Intelligent structure design of membrane cathode assembly for direct methanol fuel cell

    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, Issue 12 2005
    K. Furukawa
    Abstract The performance and the structural model of membrane electrode assembly (MEA) have been developed and experimentally verified with fundamental calculations of the direct methanol fuel cell (DMFC). The model provides information concerning the influence of the operating and structural parameters. The composition and performance optimization of MEA structure in DMFC has been investigated by including both electrochemical reaction and mass transport process. In the experimentation, the effect of Nafion content and loading method in the catalyst layer of cathode for DMFC was investigated. For the spray method electrode (SME), the cell performance and cathode performance using a dynamic hydrogen electrode (DHE) as a reference electrode was improved in comparison with those of the PME electrode by decreasing cathode potential. From ac impedance measurements of the cathode, the adsorption resistance of the SME electrode was decreased compared with that of the PME electrode. The higher cell performance was mostly dependent on the adsorption resistance. In the modelling, the cathode overpotential was decreased with increasing ionomer content, due to increasing ionic conductivity for proton transfer and the larger reaction site. The resistance to oxygen transport was increased at the same time, and became dominant at higher ionomer loadings, leading to an increase in the voltage loss. The ratio of ionomer to void space in the cathode affected the cathode polarization, which had the lowest resistance of oxygen diffusion at the ratio of 0.1,0.2. Copyright © 2005 John Wiley & Sons, Ltd. [source]


    On Selection of the Perturbation Amplitude Required to Avoid Nonlinear Effects in Impedance Measurements

    ISRAEL JOURNAL OF CHEMISTRY, Issue 3-4 2008
    Bryan Hirschorn
    Numerical simulations of electrochemical systems were used to explore the influence of large-amplitude potential perturbations on the measured impedance response. The amplitude of the input potential perturbation used for impedance measurements, normally fixed at a value of 10 mV for all systems, should instead be adjusted for each experimental system. Guidelines are developed for selection of appropriate perturbation amplitudes. A characteristic transition frequency is defined that can be used to tailor a frequency-dependent input signal to optimize signal-to-noise levels while maintaining a linear response. [source]


    Intraoperative Comparison of a Subthreshold Test Pulse with the Standard High-Energy Shock Approach for the Measurement of Defibrillation Lead Impedance

    JOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, Issue 1 2006
    ANDREAS SCHUCHERT M.D.
    There are two methods to measure shocking lead impedance: delivery of high-energy shocks that require patient sedation, and the painless measurement of impedance from subthreshold test pulses. The aim of this study was to compare the two methods. Methods: The study included 131 patients implanted with a standard DR (n = 71) or VR (n = 60) ICD connected to either single-coil (n = 39) or dual-coil (n = 92) defibrillation leads. The noninvasive high-energy impedance test was done using a 17 J shock after induction of ventricular tachyarrhythmias and compared to a 0.4 ,J test pulse used by the ICD for the subthreshold measurements. Results: Defibrillation lead impedance measurements were not significantly different between patients with the same shocking vector configuration. In patients with a single-coil defibrillation lead the impedance was 62 ± 9 , with the high-energy shock and 62 ± 8 , with the subthreshold test pulses (P = 0.13). Patients with a dual-coil configuration recorded average impedances of 40 ± 5 , from both tests (P = 0.44). While there was no difference in values recorded within each lead configuration, there was a significant difference in impedance between the single-coil and the dual-coil patient groups (P = 0.001). Conclusions: There was no significant difference between shocking lead impedances measured with the high-energy shock or the subthreshold test pulses. This offers the possibility of noninvasive, low-energy serial measurements of shocking lead impedance at follow-up visits and removing the need for sedation. [source]


    Evidence of Nearest-Neighbor Ordering in Wet-Processed Zirconia,Nickel Composites

    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 10 2001
    Carlos Pecharromán
    Monolithic zirconia,nickel (ZrO2/Ni) cermets have been prepared by a wet-processing method with nickel volume concentrations of 16%,40%. Microstructural analysis performed on scanning electron microscopy images has revealed evidence of a partial ordering of metallic particles inside the ceramic matrix. This ordering does not appear in mullite/molybdenum cermets. Complex impedance measurements have shown that the percolation threshold of ZrO2/Ni cermets appears at a filling factor (fc) of 0.34, exceeding the theoretical value (fc= 0.16), as a consequence of its microstructural order. Electrical measurements display the expected increase of capacity near the percolation threshold. These results open the possibility to design new devices with the appealing electric, magnetic, and mechanical properties that are predicted by the percolation theory. [source]


    Synergistic effect of chloride and sulfite ions on the atmospheric corrosion of bronze

    MATERIALS AND CORROSION/WERKSTOFFE UND KORROSION, Issue 5 2006
    X. Cao
    Abstract The effect of chloride along with sulfite ions on the atmospheric corrosion of bronze was investigated by using periodic wet-dry tests, surface tension tests and electrochemical impedance measurements. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) were used to characterize the corrosion products. Both the electrochemical impedance measurements and surface tension tests agreed well with the results of weight loss measurements. Synergistic effect of chloride and sulfite ions was observed during the whole process. In addition, we found that the attack of anions on the metal at the initial corrosion stage showed good agreement with their surface activity. However, as the corrosion proceeded, the interaction among the corrosion products induced by chloride and HSO3, accelerated the corrosion process. A scheme was given to explain the whole corrosion process. [source]


    Modelling and parameter comparison of equivalent circuits on the basis of impedance measurements of stainless steels

    MATERIALS AND CORROSION/WERKSTOFFE UND KORROSION, Issue 4 2006
    M. Slemnik
    Abstract In our former work [1] we have discussed the impedance of differently heat treated steels X20Cr13 in 0.1 M H2SO4, undergoing an active passive transition. Impedance spectra were interpreted in terms of a model by Armstrong [2, 3], describing the electrochemical reaction at interfaces with adsorbed intermediates. The present work was performed in order to study this phenomenon in more detail, with computer simulations of a new created and more convenient equivalent circuit in comparison with the former model. Computer simulations of equivalent circuits were also made in the region of passivity which was also continuation of our earlier work [4]. In this sense the entire study for these steels was completed by collating distinctive parameter values, demonstrating electrochemical characteristics of steel X20Cr13, undergoing different heat treatments in the active-passive and passive region. [source]


    Subthreshold Test Pulses Versus Low Energy Shock Delivery to Estimate High Energy Lead Impedance in Implanted Cardioverter Defibrillator Patients

    PACING AND CLINICAL ELECTROPHYSIOLOGY, Issue 1p2 2003
    DIRK VOLLMANN
    VOLLMANN, D., et al.: Subthreshold Test Pulses Versus Low Energy Shock Delivery to Estimate High Energy Lead Impedance in Implanted Cardioverter Defibrillator Patients. The high energy lead impedance is valuable for detecting lead failure in ICDs, but until recently shock delivery was necessary for high energy impedance measurement. This study compared the use of subthreshold test pulses and low energy test shocks to estimate the high energy impedance. Immediately after implantation of Ventak Prizm ICDs in 29 patients, the lead impedance was measured with five subthreshold (0.4 ,J) test pulses, 5 low energy (1.1 J) shocks, and two to three high energy(16 ± 4.5 J)shocks. The mean impedances measured using high energy shocks, low energy shocks, and subthreshold pulses were42.0 ± 7.3 ,, 46.5 ± 8.1 ,, and42.4 ± 7.1 ,, respectively. The impedances measured using high and low energy shocks differed significantly(P <0.0001), while those obtained by high energy shocks and low energy pulses did not(P = 0.63). According to the Pearson correlation coefficient, the impedance measurements with subthreshold pulses and low energy shocks were both closely correlated(P < 0.0001)with impedance values determined with high energy shocks. However, while the impedance values tended to be higher when measured with low energy shocks, the concordance correlation coefficient (c) was higher for subthreshold test pulse versus high energy shock(c = 0.92)than for low versus high energy shock(c = 0.73). Furthermore, the intraindividual variability of impedance measurements was lower with subthreshold pulse measurements than with low energy shocks. Compared with low energy shocks, impedance measurement with subthreshold pulses has higher reproducibility and a higher correlation with the impedance obtained by high energy shock delivery. Safe and painless high energy impedance estimation with subthreshold pulses might, therefore, help to detect ICD lead failure during routine follow-up. (PACE 2003; 26:[Pt. II]:457,460) [source]


    Electrical properties of the five-component chalkogenides of silver

    PHYSICA STATUS SOLIDI (C) - CURRENT TOPICS IN SOLID STATE PHYSICS, Issue 2 2004
    O. L. Kheifets-Kobeleva
    Abstract The electrical properties of AgGeSbS3xSe3(1-x) (x = 0.4-0.7) were investigated by means of impedance measurements in the frequency range between 10 Hz and 800 kHz and at temperatures between 78 K and 500 K. In all investigated chalcogenides ionic conductivity (Ag+) was found. The onset of ionic transport was found at 250 K-300 K, depending on the composition. The complex impedance and admittance plots, the electrical properties are given. (© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


    Structure, electrical and optical properties of (PVA/LiAsF6) polymer composite electrolyte films

    POLYMER ENGINEERING & SCIENCE, Issue 5 2010
    Madhu Mohan Varishetty
    In this work, Li+ ion conducting polymer composite electrolyte films (PECs) were prepared based on poly (vinyl alcohol) (PVA), lithium hexafluoro arsenate (LiAsF6), and ceramic filler TiO2 using solution cast technique. The XRD and FTIR spectra were used to determine the complexation of the PVA polymer with LiAsF6 salt. The ionic conductivities of the (PVA + LiAsF6) and (PVA + LiAsF6 + TiO2) films have been determined by the A.C. impedance measurements in the temperature range 320,440 K. The maximum conductivity was found to be 5.10 × 10,4 S cm,1 for PVA:LiAsF6 (75:25) + 5 wt% TiO2 polymer composite film at 320 K. The calculation of Li+ ion transference number was carried out by the combination of A.C. impedance and D.C. polarization methods and is found to be 0.52 for PVA:LiAsF6 (75:25) + 5 wt% TiO2 film. Optical properties such as direct energy gap, indirect energy gap, and optical absorption edge values were investigated in pure PVA and salt complexed PVA films from their optical absorption spectra in the wavelength range of 200,600 nm. The absorption edge was found at 5.76 eV for undoped film, while it is observed at 4.87 and 4.70 eV for 20 and 25 wt% LiAsF6 doped films, respectively. The direct band gaps for these undoped and salt doped PVA films were found to be 5.40, 5.12, and 4.87 eV, respectively, whereas the indirect band gaps were determined as 4.75, 4.45, and 4.30 eV. POLYM. ENG. SCI., 2010. © 2009 Society of Plastics Engineers [source]


    Preparation and characterization of novel hybrid thermoplastic poly(ether urethane)/poly(vinylidene fluoride) elastomers, and their application as solid polymer electrolytes

    POLYMER INTERNATIONAL, Issue 5 2007
    Ye Lin
    Abstract A comb-like polyether, poly(3-2-[2-(2-methoxyethoxy)ethoxy]ethoxymethyl-3,-methyloxetane) (PMEOX), was reacted with hexamethylene diisocyanate and extended with butanediol in a one-pot procedure to give novel thermoplastic elastomeric poly(ether urethane)s (TPEUs). The corresponding hybrid solid polymer electrolytes were fabricated through doping a mixture of TPEU and poly(vinylidene fluoride) with three kinds of lithium salts, LiClO4, LiBF4 and lithium trifluoromethanesulfonimide (LiTFSI), and were characterized using differential scanning calorimetry, thermogravimetric analysis and Fourier transform infrared spectroscopy. The ionic conductivity of the resulting polymer electrolytes was then assessed by means of AC impedance measurements, which reached 2.1 × 10,4 S cm,1 at 30 °C and 1.7 × 10,3 S cm,1 at 80 °C when LiTFSI was added at a ratio of O:Li = 20. These values can be further increased to 3.5 × 10,4 S cm,1 at 30 °C and 2.2 × 10,3 S cm,1 at 80 °C by introducing nanosized SiO2 particles into the polymer electrolytes. Copyright © 2006 Society of Chemical Industry [source]


    Effect of 1,1,-dibenzyl-4,4,-bipyridyl dichloride (DBD) on charge-conduction process and photovoltaic response of a polypyrrole (PPy) thin-film device

    POLYMER INTERNATIONAL, Issue 4 2002
    S Roy
    Abstract The present communication deals with analysing the effect of 1,1,-dibenzyl-4,4,-bipyridyl dichloride (DBD) substitution at the N -position of 2,5-polypyrrole (PPy), on electrical, impedance and photovoltaic properties. The thin-film device was fabricated by sandwiching DBD-substituted PPy between indium tin oxide (ITO) and aluminium (Al) electrodes. The formation of a Schottky barrier with Al and ohmic contact with ITO are explained in terms of p-type semiconducting behaviour of DBD-substituted PPy. In the low-voltage region, Ohm's law is followed, while in the high-voltage region, a space-charge-limited conduction (SCLC) controlled by the exponential-trap distribution was observed. DBD substitution causes shifting of the Fermi level towards the valence-band edge and an increase in charge-carrier mobility. A remarkable change in dark electrical conductivity of the order of five has been observed in DBD-substituted PPy. The electrical and impedance measurements of an ITO/PPy:DBD/Al device confirms the formation of a Schottky barrier at the DBD-substituted PPy/Al interface. Additionally, it can be modelled by a simple equivalent circuit of two resistance,capacitance (RC) elements in series representing the bulk and a junction-region. At low frequency, the device capacitance follows a pronounced voltage dependence. From a detailed analysis of the J,V and C,V characteristics, the ionized acceptor concentration (Na), width of depletion layer (W) and potential barrier height (,b) have been evaluated. We observed a significant enhancement in photocurrent on DBD substitution. The increase in photocurrent is explained by the efficient charge separation induced by the intermolecular transfer of photo-excited electrons from PPy to DBD. The substitution also causes a reduction in the trapping centres in the material. © 2002 Society of Chemical Industry [source]


    Cochlear Implants in Five Cases of Auditory Neuropathy: Postoperative Findings and Progress,

    THE LARYNGOSCOPE, Issue 4 2001
    Jon K. Shallop PhD
    Abstract Objectives To review our experiences with some of the preoperative and postoperative findings in five children who were diagnosed with auditory neuropathy and were provided with cochlear implants. We describe changes in auditory function, which enabled these children to have significant improvement in their hearing and communication skills. Study Design Pre- and postoperatively, these children received complete medical examinations at Mayo Clinic, including related consultations in audiology, pediatrics, neurology, medical genetics, otolaryngology, psychology, speech pathology, and radiology. Methods These children typically had additional medical and audiological examinations at more than one medical center. The hearing assessments of these children included appropriate behavioral audiometric techniques, objective measures of middle ear function, acoustic reflex studies, transient (TOAE) or distortion product (DPOAE) otoacoustic emissions, auditory brainstem responses (ABR), and, in some cases, transtympanic electrocochleography (ECoG). After placement of the internal cochlear implant devices (Nucleus CI24), intraoperatively we measured electrode impedances, visually detected electrical stapedius reflexes (VESR) and neural response telemetry (NRT). These intraoperative objective measures were used to help program the speech processor for each child. Postoperatively, each child has had regular follow-up to assure complete healing of the surgical incision, to assess their general medical conditions, and for speech processor programming. Their hearing and communication skills have been assessed on a regular basis. Postoperatively, we have also repeated electrode impedance measurements, NRT measurements, otoacoustic emissions, and electrical auditory brainstem responses (EABR). We now have 1 year or more follow-up information on the five children. Results The five children implanted at Mayo Clinic Rochester have not had any postoperative medical or cochlear implant device complications. All of the children have shown significant improvements in their sound detection, speech perception abilities and communication skills. All of the children have shown evidence of good NRT results. All but case D (who was not tested) showed evidence of good postoperative EABR results. Otoacoustic emissions typically remained in the non-operated ear but, as expected, they are now absent in the operated ear. Conclusion Our experiences with cochlear implantation for children diagnosed with auditory neuropathy have been very positive. The five children we have implanted have not had any complications postoperatively, and each child has shown improved listening and communication skills that have enabled each child to take advantage of different communication and educational options. [source]


    A New Oxide Ion Conductor: La3GaMo2O12

    CHINESE JOURNAL OF CHEMISTRY, Issue 8 2006
    Tian Xia
    Abstract A new oxide ion conductor, La3GaMo2O12, with a bulk conductivity of 2.7×10,2 S·cm,1 at 800 °C in air atmosphere was prepared by the traditional solid-state reaction. The room temperature X-ray diffraction data could be indexed on a monoclinic cell with lattice parameters of a=0.5602(2) nm, b=0.3224(1) nm, c=1.5741(1) nm, ,=102.555(0)°, V=0.2775(2) nm3 and space group Pc(7). Ac impedance measurements in various atmospheres further support that it is an oxide ion conductor. This material was stable in various atmospheres with oxygen partial pressure p(O2) ranging from 1.0×105 to 1.0×10,7 Pa at 800 °C. A reversible polymorphic phase transition occurred at elevated temperatures as confirmed by the differential thermal analysis and dilatometric measurement. [source]