Home About us Contact | |||
Immunoreactive Substances (immunoreactive + substance)
Selected AbstractsTwo novel neuropeptides in innervation of the salivary glands of the black-legged tick, Ixodes scapularis: Myoinhibitory peptide and SIFamideTHE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 5 2009Ladislav The peptidergic signaling system is an ancient cell,cell communication mechanism that is involved in numerous behavioral and physiological events in multicellular organisms. We identified two novel neuropeptides in the neuronal projections innervating the salivary glands of the black-legged tick, Ixodes scapularis (Say, 1821). Myoinhibitory peptide (MIP) and SIFamide immunoreactivities were colocalized in the protocerebral cells and their projections terminating on specific cells of salivary gland acini (types II and III). Immunoreactive substances were identified by matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) analysis: a 1,321.6-Da peptide with the sequence typical for MIP (ASDWNRLSGMWamide) and a 1,395.7-Da SIFamide (AYRKPPFNGSIFamide), which are highly conserved among arthropods. Genes encoding these peptides were identified in the available Ixodes genome and expressed sequence tag (EST) database. In addition, the cDNA encoding the MIP prepropeptide was isolated by rapid amplification of cDNA ends (RACE). In this report, we describe the anatomical structure of specific central neurons innervating salivary gland acini and identify different neuropeptides and their precursors expressed by these neurons. Our data provide evidence for neural control of salivary gland by MIP and SIFamide from the synganglion, thus lending a basis for functional studies of these two distinct classes of neuropeptides. J. Comp. Neurol. 517:551,563, 2009. © 2009 Wiley-Liss, Inc. [source] Two novel neuropeptides in innervation of the salivary glands of the black-legged tick, Ixodes scapularis: Myoinhibitory peptide and SIFamideTHE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 5 2009Ladislav Abstract The peptidergic signaling system is an ancient cell,cell communication mechanism that is involved in numerous behavioral and physiological events in multicellular organisms. We identified two novel neuropeptides in the neuronal projections innervating the salivary glands of the black-legged tick, Ixodes scapularis (Say, 1821). Myoinhibitory peptide (MIP) and SIFamide immunoreactivities were colocalized in the protocerebral cells and their projections terminating on specific cells of salivary gland acini (types II and III). Immunoreactive substances were identified by matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) analysis: a 1,321.6-Da peptide with the sequence typical for MIP (ASDWNRLSGMWamide) and a 1,395.7-Da SIFamide (AYRKPPFNGSIFamide), which are highly conserved among arthropods. Genes encoding these peptides were identified in the available Ixodes genome and expressed sequence tag (EST) database. In addition, the cDNA encoding the MIP prepropeptide was isolated by rapid amplification of cDNA ends (RACE). In this report, we describe the anatomical structure of specific central neurons innervating salivary gland acini and identify different neuropeptides and their precursors expressed by these neurons. Our data provide evidence for neural control of salivary gland by MIP and SIFamide from the synganglion, thus leading a basis for functional studies of these two distinct classes of neuropeptides. J. Comp. Neurol. 517:551,563, 2009. © 2009 Wiley-Liss, Inc. [source] Postnatal development of 11,-hydroxysteroid dehydrogenase type 1 in the rat hippocampusJOURNAL OF NEUROSCIENCE RESEARCH, Issue 5 2002S.L. Wan Abstract Glucocorticoids (GCs) have important actions in the hippocampus of the brain, where their access to glucocorticoid receptor (GR) is increased by 11,-hydroxysteroid dehydrogenase type 1 (11,-HSD1). 11,-HSD1 converts biologically inactive 11-dehydrocorticosterone into active corticosterone. However, the postnatal development of 11,-HSD1 in the hippocampus is not properly understood. In this study, the postnatal distribution and development of 11,-HSD1 in the hippocampus of the rat brain was studied with immunohistochemistry and Western blot analysis. Results showed that abundant 11,-HSD1 immunoreactive substance (ir-11,-HSD1) was present in the hippocampus. There were homogeneous distributions of 11,-HSD1 in the hippocampal CA1, CA2, CA3, CA4 regions and the dentate gyrus at postnatal days 1, 3, and 7. Interestingly, the developmental distribution of GR in the hippocampus followed the same pattern as 11,-HSD1. Western blot analysis demonstrated that a higher level of expression of 11,-HSD1 in the hippocampus was found in the first 2 weeks of life. The expressions of 11,-HSD1 started to drop to adult levels at about postnatal day 15 both in the hippocampus and in other brain areas. These results suggest that the higher expression of 11,-HSD1 in the neonatal hippocampus may be important for the maturation of the central nervous system mediated by GCs through GR. © 2002 Wiley-Liss, Inc. [source] Clinical application of an enzyme immunoassay for cholecystokinin-like immunoreactive substance for determination of the human plasma levels: the effect of metoclopramide on gastrointestinal peptides and stress-related hormonesJOURNAL OF PEPTIDE SCIENCE, Issue 5 2006Fumihiko Katagiri Abstract Metoclopramide, a prokinetic drug, is widely used to treat vomiting and nausea. Delayed gastric emptying and continual stress are considered important factors, among others, that induce nausea and vomiting. One gastrointestinal motility regulatory factor has been assumed to be the induction of changes in the levels of peptides such as gastrin, somatostatin, motilin, and cholecystokinin (CCK) in plasma. In contrast, adrenocorticotropic hormone (ACTH) and cortisol are used as indicators of stress. Here, we studied the effects of metoclopramide on human plasma gastrin-, somatostatin-, motilin-, and CCK-like immunoreactive substances (ISs) and ACTH-IS and cortisol under stress conditions using repetitive blood sampling in healthy subjects. Metoclopramide hydrochloride at a dose of 30 mg or placebo was orally administered to five healthy male volunteers. Blood samples were taken before and 20, 40, 60, 90, 120, 180, and 240 min after administration, subject to extracting procedures, and submitted to a highly sensitive enzyme immunoassay system. A single administration of metoclopramide caused significant increases in plasma somatostatin-IS levels compared with the placebo. Metoclopramide significantly decreased plasma gastrin- and suppressed ACTH-IS and cortisol levels compared with the placebo. We hypothesize that metoclopramide might have an accelerating gastric-emptying effect and a modulatory effect on the hypothalamo-pituitary-adrenal (HPA) axis and the autonomic nervous function. These effects might be beneficial in stress-related diseases, which suggest that this medicine has clinicopharmacological activities. Copyright © 2005 European Peptide Society and John Wiley & Sons, Ltd. [source] Expression of synapsin and co-localization with serotonin and RFamide-like immunoreactivity in the nervous system of the chordoid larva of Symbion pandora (Cycliophora)INVERTEBRATE BIOLOGY, Issue 1 2010Ricardo Cardoso Neves Abstract. Cycliophora is one of the most recently described metazoan phyla and hitherto includes only two species: Symbion pandora and Symbion americanus. With a very complex life cycle, cycliophorans are regarded as an enigmatic group with an uncertain phylogenetic position, although they are commonly considered lophotrochozoan protostomes. In order to extend the database concerning the distribution of immunoreactive substances in the free-swimming chordoid larva of S. pandora, we investigated synapsin immunoreactivity using fluorescence-coupled antibodies in combination with confocal laserscanning microscopy. Moreover, we analyzed the co-localization patterns of synapsin, serotonin, and RFamide-like immunoreactivity in the chordoid larva by 3D imaging technology based on the confocal microscopy image stacks. Synapsin is expressed in large parts of the bilobed anterior cerebral ganglion including anterior and dorsal projections. Two pairs of ventral neurites run longitudinally into the larval body of which the inner pair shows only weak, scattered synapsin immunoreactivity. In addition, a lateral synapsin immunoreactive projection emerges posteriorly from each ventral longitudinal axon. Double immunostaining shows co-localization of synapsin and serotonin in the cerebral ganglion, the outer and the inner ventral neurites, and the anterior projections. Synapsin and RFamide-like immunoreactivity co-occur in the cerebral ganglion, the outer ventral neurites, and the dorsal projections. Accordingly, the cerebral ganglion and the outer ventral neurites are the only neural structures that co-express the two neurotransmitters and synapsin. The overall neuroanatomical condition of the cycliophoran chordoid larva resembles much more the situation of adult rather than larval life cycle stages of a number of spiralian taxa. [source] Clinical application of an enzyme immunoassay for cholecystokinin-like immunoreactive substance for determination of the human plasma levels: the effect of metoclopramide on gastrointestinal peptides and stress-related hormonesJOURNAL OF PEPTIDE SCIENCE, Issue 5 2006Fumihiko Katagiri Abstract Metoclopramide, a prokinetic drug, is widely used to treat vomiting and nausea. Delayed gastric emptying and continual stress are considered important factors, among others, that induce nausea and vomiting. One gastrointestinal motility regulatory factor has been assumed to be the induction of changes in the levels of peptides such as gastrin, somatostatin, motilin, and cholecystokinin (CCK) in plasma. In contrast, adrenocorticotropic hormone (ACTH) and cortisol are used as indicators of stress. Here, we studied the effects of metoclopramide on human plasma gastrin-, somatostatin-, motilin-, and CCK-like immunoreactive substances (ISs) and ACTH-IS and cortisol under stress conditions using repetitive blood sampling in healthy subjects. Metoclopramide hydrochloride at a dose of 30 mg or placebo was orally administered to five healthy male volunteers. Blood samples were taken before and 20, 40, 60, 90, 120, 180, and 240 min after administration, subject to extracting procedures, and submitted to a highly sensitive enzyme immunoassay system. A single administration of metoclopramide caused significant increases in plasma somatostatin-IS levels compared with the placebo. Metoclopramide significantly decreased plasma gastrin- and suppressed ACTH-IS and cortisol levels compared with the placebo. We hypothesize that metoclopramide might have an accelerating gastric-emptying effect and a modulatory effect on the hypothalamo-pituitary-adrenal (HPA) axis and the autonomic nervous function. These effects might be beneficial in stress-related diseases, which suggest that this medicine has clinicopharmacological activities. Copyright © 2005 European Peptide Society and John Wiley & Sons, Ltd. [source] Iso,avonoids in the rutaceae family: 1.PHYTOCHEMICAL ANALYSIS, Issue 5 2004Fortunella obovata, Murraya paniculata, four Citrus species Abstract Several types of compounds with immunoreactivity similar to iso,avonoids were detected in water: ethanol extracts of leaves of Fortunella obovata Hort. ex Tanaka, Murraya paniculata Jack. and four Citrus species, namely C. aurantium L., C. grandis Osbeck, C. limonia Osbeck., and C. sinensis Osbeck (Rutaceae). The chromatographic mobilities of the immunoreactive substances were compared with those of authentic standards, revealing a spectrum of iso,avonoid metabolites in all plants studied. Aglycones as well as glycosides were recognized, namely daidzin, genistin, daidzein, genistein, formononetin, biochanin A, prunetin, and several incompletely characterized iso,avonoids. A subsequent HPLC-MS study veri,ed the identities of the main immunoreactive iso,avonoids and established the identities of several others, viz. glycitein, glycitin, ononin and sissotrin, including the malonylated and acetylated iso,avonoid glucosides. The estimated content of the individual immunoreactive entities ranged from a few µg to about 2 mg/kg (dry weight). It is concluded that the iso,avonoid metabolic pathway is present throughout the Rutaceae family. Copyright © 2004 John Wiley & Sons, Ltd. [source] |