Immunomodulatory Action (immunomodulatory + action)

Distribution by Scientific Domains

Selected Abstracts

Evidence of immune system melatonin production by two pineal melatonin deficient mice, C57BL/6 and Swiss strains

Araceli Gómez-Corvera
Abstract:, We evaluated two pineal melatonin deficient mice described in the literature, i.e., C57BL/6 and Swiss mice, as animal models for studying the immunomodulatory action of melatonin. Plasma melatonin levels in C57BL/6 and Swiss strains were detectable, but lower than levels in control C3H/HENHSD mice. Since these strains are suppose to be pineal melatonin deficient an extrapineal melatonin synthesis may contribute to plasma levels. Regarding cells and tissues from the immune system, all of them were found to synthesize melatonin although at low levels. N-acetyltransferase (AANAT) mRNA was also amplified in order to analyze the alternative splicing between exons 3,4 described for pineal C57BL/6 mice which generates an inclusion of a pseudoexon of 102 bp. For the pineal gland, both the wild type and the mutant isoforms were present in all mice strains although in different proportions. We observed a predominant wild type AANAT mature RNA in thymus, spleen and bone marrow cells. Peripheral blood mononuclear cells (PBMC) culture shown an evident AANAT amplification in all strains studied. Although the bands detected were less intense in melatonin deficient mice, the amplification almost reached the control cell intensity after stimulation with phytohemaglutinin (PHA). In summary, melatonin detection and AANAT mRNA expression in inbred and outbred mice clearly indicate that different cells and tissues from the immune system are able to synthesize melatonin. Thus, the pineal defect seems not to be generalized to all tissues, suggesting that other cells may compensate the low pineal melatonin production contributing to the measurable plasma melatonin level. [source]

Treatment with testosterone or estradiol in melatonin treated females and males MRL/MpJ-Faslpr mice induces negative effects in developing systemic lupus erythematosus

Antonio J. Jimenez-Caliani
Abstract:, MRL/MpJ-Faslpr mice is widely accepted as a valuable model of systemic lupus erythematosus. As described in a previous work, the incidence of lupus in this strain is determined by sex hormones, i.e., estrogens and androgens. Moreover, we reported that the immunomodulatory action of melatonin in these mice was gender-dependent probably through modulation and inhibition of sex hormones. Herein, we performed an experiment using hormone therapy, by treating female MRL-lpr mice with testosterone and males with estradiol and with melatonin. A decrease in total serum immunoglobulin (Ig)G and IgM immunoglobulin titers, anti-double-stranded DNA, and anti-CII autoantibodies in female mice treated with both melatonin and testosterone was revealed, along with an increase in pro-inflammatory cytokines [interleukin (IL)-2, IL-6, interferon-,, tumor necrosis factor-,, and IL-1,), nitrite/nitrate and a decrease in anti-inflammatory cytokines (IL-10). Melatonin and estradiol treatment exhibited a similar effect in male mice. Autoantibody titer elevation and pro-inflammatory versus anti-inflammatory cytokine prevalence degraded all immunological parameters. Similar results were obtained when spleen and lymph node lymphocytes were cultured. Again, melatonin and testosterone treatment stimulated pro-inflammatory and reduced anti-inflammatory cytokines produced by lymphocytes in females. The effect was similar in males treated with melatonin and estradiol. In summary, we observed that although melatonin alone prevents lupus development in females, adding testosterone, increased pro-inflammatory cytokine pattern. In contrary, estradiol-treated males did not show any decrease in pro-inflammatory cytokines but showed an increase in regard to melatonin controls. These findings confirm that melatonin action in MRL/MpJ-Faslpr mice could be gender-dependent through modulation of sex hormones. [source]

A short course of BG9588 (anti,CD40 ligand antibody) improves serologic activity and decreases hematuria in patients with proliferative lupus glomerulonephritis

Dimitrios T. Boumpas
Objective CD40,CD40 ligand (CD40L) interactions play a significant role in the production of autoantibodies and tissue injury in lupus nephritis. We performed an open-label, multiple-dose study to evaluate the safety, efficacy, and pharmacokinetics of BG9588, a humanized anti-CD40L antibody, in patients with proliferative lupus nephritis. The primary outcome measure was 50% reduction in proteinuria without worsening of renal function. Methods Twenty-eight patients with active proliferative lupus nephritis were scheduled to receive 20 mg/kg of BG9588 at biweekly intervals for the first 3 doses and at monthly intervals for 4 additional doses. Safety evaluations were performed on all patients. Eighteen patients receiving at least 3 doses were evaluated for efficacy. Results The study was terminated prematurely because of thromboembolic events occurring in patients in this and other BG9588 protocols (2 myocardial infarctions in this study). Of the 18 patients for whom efficacy could be evaluated, 2 had a 50% reduction in proteinuria without worsening of renal function. Mean reductions of 38.9% (P < 0.005), 50.1% (P < 0.005), and 25.3% (P < 0.05) in anti,double-stranded DNA (anti-dsDNA) antibody titers were observed at 1, 2, and 3 months, respectively, after the last treatment. There was a significant increase in serum C3 concentrations at 1 month after the last dose (P < 0.005), and hematuria disappeared in all 5 patients with significant hematuria at baseline. There were no statistically significant reductions in lymphocyte count or serum immunoglobulin, anticardiolipin antibody, or rubella IgG antibody concentrations after therapy. Conclusion A short course of BG9588 treatment in patients with proliferative lupus nephritis reduces anti-dsDNA antibodies, increases C3 concentrations, and decreases hematuria, suggesting that the drug has immunomodulatory action. Additional studies will be needed to evaluate its long-term effects. [source]

Recombinant Human Erythropoietin Treatment of Chronic Renal Failure Patients Normalizes Altered Phenotype and Proliferation of CD4-positive T Lymphocytes

Katarzyna A. Lisowska
Abstract Patients with chronic renal failure (CRF) receive recombinant human erythropoietin (rhEPO) for the correction of anemia. However, rhEPO also has an immunomodulatory effect. Detailed changes of phenotype and function of CD4+ T lymphocytes in CRF patients receiving rhEPO have not been reported yet; their study may bring insight into understanding of this immunomodulatory action of rhEPO. Two groups of CRF patients were included into the study: those treated; and those not receiving rhEPO. The expression of activation markers on CD4+ lymphocytes was measured with flow cytometry, both ex vivo and in vitro. The kinetics of CD4+ T lymphocytes proliferation was calculated using a dividing cells tracing method and numerical approach. Significantly higher percentages of CD4+CD95+, CD4+HLA-DR+ cells, and lower percentages of CD4+CD69+ and CD4+CD28+ cells were observed in both rhEPO-treated and untreated patients when compared with healthy controls. Changes in the proportions of CD4+CD28+ and CD4+HLA-DR+ subpopulations were dependent on the type of rhEPO, being more pronounced for rhEPO,. CD4+ lymphocytes from untreated patients exhibited decreased expression of CD28 and CD69 after stimulation in vitro, whereas the expression of these antigens on lymphocytes of rhEPO-treated patients was similar to that observed in healthy controls. Fewer CD4+CD28+ T lymphocytes of untreated patients proliferated in vitro; these cells had longer G0,G1 time, which negatively correlated with surface expression of CD28. Our study confirms that rhEPO treatment normalizes activation parameters of CD4+ T lymphocytes and their proliferative capacity, which could explain earlier described immunomodulatory effects of rhEPO in patients suffering from CRF. [source]

Sulphasalazine inhibits macrophage activation: inhibitory effects on inducible nitric oxide synthase expression, interleukin-12 production and major histocompatibility complex II expression

IMMUNOLOGY, Issue 4 2001
György Haskó
Summary The anti-inflammatory agent sulphasalazine is an important component of several treatment regimens in the therapy of ulcerative colitis, Crohn's disease and rheumatoid arthritis. Sulphasalazine has many immunomodulatory actions, including modulation of the function of a variety of cell types, such as lymphocytes, natural killer cells, epithelial cells and mast cells. However, the effect of this agent on macrophage (M,) function has not been characterized in detail. In the present study, we investigated the effect of sulphasalazine and two related compounds , sulphapyridine and 5-aminosalicylic acid , on M, activation induced by bacterial lipopolysaccharide (LPS) and interferon-, (IFN-,). In J774 M, stimulated with LPS (10 µg/ml) and IFN-, (100 U/ml), sulphasalazine (50,500 µm) suppressed nitric oxide (NO) production in a concentration-dependent manner. The expression of the inducible NO synthase (iNOS) was suppressed by sulphasalazine at 500 µm. Sulphasalazine inhibited the LPS/IFN-,-induced production of both interleukin-12 (IL-12) p40 and p70. The suppression of both NO and IL-12 production by sulphasalazine was superior to that by either sulphapyridine or 5-aminosalicylic acid. Although the combination of LPS and IFN-, induced a rapid expression of the active forms of p38 and p42/44 mitogen-activated protein kinases and c-Jun terminal kinase, sulphasalazine failed to interfere with the activation of any of these kinases. Finally, sulphasalazine suppressed the IFN-,-induced expression of major histocompatibility complex class II. These results demonstrate that the M, is an important target of the immunosuppressive effect of sulphasalazine. [source]

Therapeutic potential of melatonin in traumatic central nervous system injury

Supriti Samantaray
Abstract:, A vast literature extolling the benefits of melatonin has accumulated during the past four decades. Melatonin was previously considered of importance to seasonal reproduction and circadian rhythmicity. Currently, it appears to be a versatile anti-oxidative and anti-nitrosative agent, a molecule with immunomodulatory actions and profound oncostatic activity, and also to play a role as a potent neuroprotectant. Nowadays, melatonin is sold as a dietary supplement with differential availability as an over-the-counter aid in different countries. There is a widespread agreement that melatonin is nontoxic and safe considering its frequent, long-term usage by humans at both physiological and pharmacological doses with no reported side effects. Endeavors toward a designated drug status for melatonin may be enormously rewarding in clinics for treatment of several forms of neurotrauma where effective pharmacological intervention has not yet been attained. This mini review consolidates the data regarding the efficacy of melatonin as an unique neuroprotective agent in traumatic central nervous system (CNS) injuries. Well-documented actions of melatonin in combating traumatic CNS damage are compiled from various clinical and experimental studies. Research on traumatic brain injury and ischemia/reperfusion are briefly outlined here as they have been recently reviewed elsewhere, whereas the studies on different animal models of the experimental spinal cord injury have been extensively covered in this mini review for the first time. [source]

Toward quantifying the usage costs of human immunity: Altered metabolic rates and hormone levels during acute immune activation in men

Michael P. Muehlenbein
There is a paucity of data on the energetic demands of human immune functions, despite the fact that both clinical medicine and evolutionary biology would benefit from further clarification of these costs. To better understand the energetic requirements of mounting a mild immune response, as well as some of the major hormonal changes underlying these metabolic changes, we examined changes in resting metabolic rate (RMR) and hormones during and after respiratory tract infection in young adult men. An epidemiologic passive detection design was used to recruit 25 nonfebrile subjects naturally infected with respiratory tract pathogens. Symptomology, percent body fat, RMR, salivary testosterone and cortisol, and other information were collected at a minimum of three time points during and after convalescence. Comparisons of the differences in RMR, testosterone, and cortisol between sampling days within individual cases were made using paired t -tests. Participants experienced 8% higher RMR during illness, and a subset of these men experienced a mean increase greater than 14%. The participants also experienced 10% lower testosterone levels during illness, and a subset of these participants experienced a mean decrease of 30%, although cortisol levels did not change significantly. These results document elevated RMR following natural pathogen exposure in adult humans, demonstrating that even mild immune reactions can elicit significant increases in energy expenditure. Understanding the costs of immunity and the immunomodulatory actions of hormones are central to understanding the role of immunity in human life history evolution. Am. J. Hum. Biol. 2010. © 2010 Wiley-Liss, Inc. [source]