Immunofluorescent Labeling (immunofluorescent + labeling)

Distribution by Scientific Domains


Selected Abstracts


Regulation of implant surface cell adhesion: characterization and quantification of S-phase primary osteoblast adhesions on biomimetic nanoscale substrates

JOURNAL OF ORTHOPAEDIC RESEARCH, Issue 2 2007
Manus J.P. Biggs
Abstract Integration of an orthopedic prosthesis for bone repair must be associated with osseointegration and implant fixation, an ideal that can be approached via topographical modification of the implant/bone interface. It is thought that osteoblasts use cellular extensions to gather spatial information of the topographical surroundings prior to adhesion formation and cellular flattening. Focal adhesions (FAs) are dynamic structures associated with the actin cytoskeleton that form adhesion plaques of clustered integrin receptors that function in coupling the cell cytoskeleton to the extracellular matrix (ECM). FAs contain structural and signalling molecules crucial to cell adhesion and survival. To investigate the effects of ordered nanotopographies on osteoblast adhesion formation, primary human osteoblasts (HOBs) were cultured on experimental substrates possessing a defined array of nanoscale pits. Nickel shims of controlled nanopit dimension and configuration were fabricated by electron beam lithography and transferred to polycarbonate (PC) discs via injection molding. Nanopits measuring 120 nm diameter and 100 nm in depth with 300 nm center,center spacing were fabricated in three unique geometric conformations: square, hexagonal, and near-square (300 nm spaced pits in square pattern, but with ±50 nm disorder). Immunofluorescent labeling of vinculin allowed HOB adhesion complexes to be visualized and quantified by image software. Perhipheral adhesions as well as those within the perinuclear region were observed, and adhesion length and number were seen to vary on nanopit substrates relative to smooth PC. S-phase cells on experimental substrates were identified with bromodeoxyuridine (BrdU) immunofluorescent detection, allowing adhesion quantification to be conducted on a uniform flattened population of cells within the S-phase of the cell cycle. Findings of this study demonstrate the disruptive effects of ordered nanopits on adhesion formation and the role the conformation of nanofeatures plays in modulating these effects. Highly ordered arrays of nanopits resulted in decreased adhesion formation and a reduction in adhesion length, while introducing a degree of controlled disorder present in near-square arrays, was shown to increase focal adhesion formation and size. HOBs were also shown to be affected morphologicaly by the presence and conformation of nanopits. Ordered arrays affected cellular spreading, and induced an elongated cellular phenotype, indicative of increased motility, while near-square nanopit symmetries induced HOB spreading. It is postulated that nanopits affect osteoblast,substrate adhesion by directly or indirectly affecting adhesion complex formation, a phenomenon dependent on nanopit dimension and conformation. © 2006 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 25:273,282, 2007 [source]


Development of a Model Bladder Extracellular Matrix Combining Disulfide Cross-Linked Hyaluronan with Decellularized Bladder Tissue

MACROMOLECULAR BIOSCIENCE, Issue 8 2006
Allison L. Brown
Abstract Summary: In this work we investigate the feasibility of modifying porcine-derived BAM to include HA with a view to developing a model, artificial extracellular matrix for the study of bladder cell-matrix interactions. HA-DPTH was incorporated into BAM disks and then cross-linked oxidatively to a disulfide containing hydrogel. Disks were seeded with bladder smooth muscle cells (BSMC) and UEC under three culture configurations and incubated for 3, 7, and 14 d. At each time point, matrix contraction was measured, and media supernatants assayed for cell-secreted gelatinase activity. To evaluate cell adherence and organization, triple immunofluorescent labeling of cell nuclei, actin cytoskeleton, and focal contacts was performed. HA-modified BAM exhibited a significant increase in matrix contraction and induced a higher level of cell-secreted gelatinase activity compared to unmodified BAM. Immunofluorescent labeling demonstrated that BSMCs remained adherent to both scaffold types over time. The distribution and organization of the cytoskeleton and focal contacts did not appear to be altered by the presence of HA. Interestingly, cellular infiltration into modified BAM was evident by 7 d and continued beyond 14 d, while BSMCs seeded onto unmodified BAM remained localized to the surface out to 14 d, with minimal infiltration evident only at day 28. These differences in cell infiltration support the gelatinase activity results. Increases in cell migration and matrix proteolysis in the presence of HA may be contributing factors toward BAM remodeling leading to increased matrix contraction with time. The model ECM developed in this work will be utilized for future studies aimed at elucidating the mechanisms controlling key remodeling events associated with bladder repair. Matrix contraction of cell-seeded BAM scaffolds. [source]


Quantitative analysis of neuronal diversity in the mouse olfactory bulb

THE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 6 2007
S. Parrish-Aungst
Abstract Olfactory sensory information is processed and integrated by circuits within the olfactory bulb. Golgi morphology suggests the olfactory bulb contains several major neuronal classes. However, an increasingly diverse collection of neurochemical markers have been localized in subpopulations of olfactory bulb neurons. While the mouse is becoming the animal model of choice for olfactory research, little is known about the proportions of neurons expressing and coexpressing different neurochemical markers in this species. Here we characterize neuronal populations in the mouse main olfactory bulb, focusing on glomerular populations. Immunofluorescent labeling for: 1) calretinin, 2) calbindin D-28K (CB), 3) parvalbumin, 4) neurocalcin, 5) tyrosine hydroxylase (TH), 6) the 67-kDa isoform of GAD (GAD67), and 7) the neuronal marker NeuN was performed in mice expressing green fluorescent protein under the control of the glutamic acid decarboxylase 65kDa (GAD65) promoter. Using unbiased stereological cell counts we estimated the total numbers of cells and neurons in the bulb and the number and percentage of neurons expressing and coexpressing different neurochemical populations in each layer of the olfactory bulb. Use of a genetic label for GAD65 and immunohistochemistry for GAD67 identified a much larger percentage of GABAergic neurons in the glomerular layer (55% of all neurons) than previously recognized. Additionally, while many glomerular neurons expressing TH or CB coexpress GAD, the majority of these neurons preferentially express the GAD67 isoform. These data suggest that the chemospecific populations of neurons in glomeruli form distinct subpopulations and that GAD isoforms are preferentially regulated in different neurochemical cell types. J. Comp. Neurol. 501:825,836, 2007. © 2007 Wiley-Liss, Inc. [source]


Melatonin attenuates calpain upregulation, axonal damage and neuronal death in spinal cord injury in rats

JOURNAL OF PINEAL RESEARCH, Issue 4 2008
Supriti Samantaray
Abstract:, Multiple investigations in vivo have shown that melatonin (MEL) has a neuroprotective effect in the treatment of spinal cord injury (SCI). This study investigates the role of MEL as an intervening agent for ameliorating Ca2+ -mediated events, including activation of calpain, following its administration to rats sustaining experimental SCI. Calpain, a Ca2+ -dependent neutral protease, is known to be involved in the pathogenesis of SCI. Rats were injured using a standard weight-drop method that induced a moderately severe injury (40 g.cm force) at T10. Sham controls received laminectomy only. Injured animals were given either 45 mg/kg MEL or vehicle at 15 min post-injury by intraperitoneal injection. At 48 hr post-injury, spinal cord (SC) samples were collected. Immunofluorescent labelings were used to identify calpain expression in specific cell types, such as neurons, glia, or macrophages. Combination of terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick-end labeling (TUNEL) and double immunofluorescent labelings was used to identify apoptosis in specific cells in the SC. The effect of MEL on axonal damage was also investigated using antibody specific for dephosphorylated neurofilament protein (dNFP). Treatment of SCI animals with MEL attenuated calpain expression, inflammation, axonal damage (dNFP), and neuronal death, indicating that MEL provided neuroprotective effect in SCI. Further, expression and activity of calpain and caspse-3 were examined by Western blotting. The results indicated a significant decrease in expression and activity of calpain and caspse-3 in SCI animals after treatment with MEL. Taken together, this study strongly suggested that MEL could be an effective neuroprotective agent for treatment of SCI. [source]


Development of a Model Bladder Extracellular Matrix Combining Disulfide Cross-Linked Hyaluronan with Decellularized Bladder Tissue

MACROMOLECULAR BIOSCIENCE, Issue 8 2006
Allison L. Brown
Abstract Summary: In this work we investigate the feasibility of modifying porcine-derived BAM to include HA with a view to developing a model, artificial extracellular matrix for the study of bladder cell-matrix interactions. HA-DPTH was incorporated into BAM disks and then cross-linked oxidatively to a disulfide containing hydrogel. Disks were seeded with bladder smooth muscle cells (BSMC) and UEC under three culture configurations and incubated for 3, 7, and 14 d. At each time point, matrix contraction was measured, and media supernatants assayed for cell-secreted gelatinase activity. To evaluate cell adherence and organization, triple immunofluorescent labeling of cell nuclei, actin cytoskeleton, and focal contacts was performed. HA-modified BAM exhibited a significant increase in matrix contraction and induced a higher level of cell-secreted gelatinase activity compared to unmodified BAM. Immunofluorescent labeling demonstrated that BSMCs remained adherent to both scaffold types over time. The distribution and organization of the cytoskeleton and focal contacts did not appear to be altered by the presence of HA. Interestingly, cellular infiltration into modified BAM was evident by 7 d and continued beyond 14 d, while BSMCs seeded onto unmodified BAM remained localized to the surface out to 14 d, with minimal infiltration evident only at day 28. These differences in cell infiltration support the gelatinase activity results. Increases in cell migration and matrix proteolysis in the presence of HA may be contributing factors toward BAM remodeling leading to increased matrix contraction with time. The model ECM developed in this work will be utilized for future studies aimed at elucidating the mechanisms controlling key remodeling events associated with bladder repair. Matrix contraction of cell-seeded BAM scaffolds. [source]


Melatonin attenuates calpain upregulation, axonal damage and neuronal death in spinal cord injury in rats

JOURNAL OF PINEAL RESEARCH, Issue 4 2008
Supriti Samantaray
Abstract:, Multiple investigations in vivo have shown that melatonin (MEL) has a neuroprotective effect in the treatment of spinal cord injury (SCI). This study investigates the role of MEL as an intervening agent for ameliorating Ca2+ -mediated events, including activation of calpain, following its administration to rats sustaining experimental SCI. Calpain, a Ca2+ -dependent neutral protease, is known to be involved in the pathogenesis of SCI. Rats were injured using a standard weight-drop method that induced a moderately severe injury (40 g.cm force) at T10. Sham controls received laminectomy only. Injured animals were given either 45 mg/kg MEL or vehicle at 15 min post-injury by intraperitoneal injection. At 48 hr post-injury, spinal cord (SC) samples were collected. Immunofluorescent labelings were used to identify calpain expression in specific cell types, such as neurons, glia, or macrophages. Combination of terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick-end labeling (TUNEL) and double immunofluorescent labelings was used to identify apoptosis in specific cells in the SC. The effect of MEL on axonal damage was also investigated using antibody specific for dephosphorylated neurofilament protein (dNFP). Treatment of SCI animals with MEL attenuated calpain expression, inflammation, axonal damage (dNFP), and neuronal death, indicating that MEL provided neuroprotective effect in SCI. Further, expression and activity of calpain and caspse-3 were examined by Western blotting. The results indicated a significant decrease in expression and activity of calpain and caspse-3 in SCI animals after treatment with MEL. Taken together, this study strongly suggested that MEL could be an effective neuroprotective agent for treatment of SCI. [source]