Immunobiological Activities (immunobiological + activity)

Distribution by Scientific Domains


Selected Abstracts


Immunobiological activities of a chemically synthesized lipid A of Porphyromonas gingivalis

FEMS IMMUNOLOGY & MEDICAL MICROBIOLOGY, Issue 4 2000
Tomohiko Ogawa
Abstract A synthetic lipid A of Porphyromonas gingivalis strain 381 (compound PG-381), which is similar to its natural lipid A, demonstrated no or very low endotoxic activities as compared to Escherichia coli -type synthetic lipid A (compound 506). On the other hand, compound PG-381 had stronger hemagglutinating activities on rabbit erythrocytes than compound 506. Compound PG-381 also induced mitogenic responses in spleen cells from lipopolysaccharide (LPS)-hyporesponsive C3H/HeJ mice, as well as LPS-responsive C3H/HeN mice. The addition of polymyxin B resulted in the inhibition of mitogenic activities, however, compound 506 did not show these capacities. Additionally, compound PG-381 showed a lower level of activity in inducing cytokine production in peritoneal macrophages and gingival fibroblasts from C3H/HeN mice, but not C3H/HeJ mice, in comparison to compound 506. Thus, this study demonstrates that the chemical synthesis of lipid A, mimicking the natural lipid A portion of LPS from P. gingivalis, confirms its low endotoxic potency and immunobiological activity. [source]


Endotoxic and immunobiological activities of a chemically synthesized lipid A of Helicobacter pylori strain 206,1

FEMS IMMUNOLOGY & MEDICAL MICROBIOLOGY, Issue 1-2 2003
Tomohiko Ogawa
Abstract A synthetic lipid A of Helicobacter pylori strain 206-1 (compound HP206,1), which is similar to its natural lipid A, exhibited no or very low endotoxic activities as compared to Escherichia coli -type synthetic lipid A (compound 506). Furthermore, compound HP206-1 as well as its natural lipid A demonstrated no or very low mitogenic responses in murine spleen cell. On the other hand, compound HP206-1 showed a weaker but significant production of interleukin-8 in a gastric cancer cell line, MKN-1, in comparison with compound 506. Furthermore, compound HP206-1 exhibited induction of tumor necrosis factor-, production in human peripheral blood mononuclear cells and the cytokine production was clearly inhibited by mouse anti-human Toll-like receptor (TLR) 4 monoclonal antibody HTA125. Our findings indicate that the chemically synthesized lipid A, mimicking the natural lipid A portion of lipopolysaccharide from H. pylori strain 206-1, has a low endotoxic potency and immunobiological activities, and is recognized by TLR4. [source]


Toll-like receptor 4-dependent recognition of structurally different forms of chemically synthesized lipid As of Porphyromonas gingivalis

CLINICAL & EXPERIMENTAL IMMUNOLOGY, Issue 3 2007
N. Sawada
Summary Porphyromonas gingivalis is a Gram-negative anaerobic oral black-pigmented bacterium closely associated with chronic periodontitis. Lipopolysaccharide (LPS) derived from P. gingivalis is shown to be unusual because the LPS contains a greater number of lipid A species, such as tri-, tetra-, and/or penta-acylated lipid As. In this study, a lipid A possessing penta-fatty acyl chains derived from P. gingivalis strain 381 (compound PG-381,5FA) was synthesized, and examined for its immunobiological activities, compared with a tri-acylated lipid A (compound PG-381,3FA) synthesized previously. Compound PG-381-5FA, similar to compound PG-381-3FA, demonstrated weaker activity in a Limulus test as compared with Escherichia coli -type synthetic lipid A (compound 506). Compound PG-381-5FA, followed by compound PG-381-3FA, induced KC, interleukin-6, and tumour necrosis factor-, production in peritoneal macrophages from LPS-responsive C3H/HeN mice, but not in those from LPS-hyporesponsive C3H/HeJ mice. Furthermore, compound PG-381-5FA, as well as compound PG-381-3FA, activated nuclear factor-,B via Toll-like receptor (TLR)4/mD-2, but not TLR2, in a manner similar to compound 506, and worked as an antagonist for compound 506-induced cell activation. In the case of human peripheral blood mononuclear cells, compound PG-381-5FA showed much stronger IL-6-inducing activity than compound PG-381-3FA. The present results demonstrate that the chemical synthesis of a penta-acylated lipid A, mimicking the natural lipid A portion of LPS from P. gingivalis, is attributable to immune cell activation through TLR4, similar to that of compound 506. [source]


Immunobiological activities of a chemically synthesized lipid A of Porphyromonas gingivalis

FEMS IMMUNOLOGY & MEDICAL MICROBIOLOGY, Issue 4 2000
Tomohiko Ogawa
Abstract A synthetic lipid A of Porphyromonas gingivalis strain 381 (compound PG-381), which is similar to its natural lipid A, demonstrated no or very low endotoxic activities as compared to Escherichia coli -type synthetic lipid A (compound 506). On the other hand, compound PG-381 had stronger hemagglutinating activities on rabbit erythrocytes than compound 506. Compound PG-381 also induced mitogenic responses in spleen cells from lipopolysaccharide (LPS)-hyporesponsive C3H/HeJ mice, as well as LPS-responsive C3H/HeN mice. The addition of polymyxin B resulted in the inhibition of mitogenic activities, however, compound 506 did not show these capacities. Additionally, compound PG-381 showed a lower level of activity in inducing cytokine production in peritoneal macrophages and gingival fibroblasts from C3H/HeN mice, but not C3H/HeJ mice, in comparison to compound 506. Thus, this study demonstrates that the chemical synthesis of lipid A, mimicking the natural lipid A portion of LPS from P. gingivalis, confirms its low endotoxic potency and immunobiological activity. [source]