Home About us Contact | |||
Immediate Application (immediate + application)
Selected AbstractsInvestigation of physical and bathymetric characteristics of Lakes Abaya and Chamo, Ethiopia, and their management implicationsLAKES & RESERVOIRS: RESEARCH AND MANAGEMENT, Issue 3 2006Seleshi Bekele Awulachew Abstract The purpose of this study was to investigate the physical parameters of Lakes Abaya and Chamo in the Ethiopian rift lakes system, including such physical characteristics as depth, water resources capacity, hydrology, water balances, and impacts of water use and degradation of their watersheds. These parameters have not previously been studied for these two lakes to any significant extent. This study describes the bathymetry survey undertaken for these two lakes, and the morphometric characteristics derived from it. This study is part of a research project developed to provide further details on such parameters as hydrology, water quality, sediment inflows and deposition, lake hydrodynamics and consumptive water uses. The bathymetric survey was conducted, utilizing a combination of global positioning system (GPS) and echo sounder. To calculate the morphometric characteristics, the background lake map was digitized, and the surveyed primary data were developed as digital values. The digital values were interpolated, generating grids of the elevation surface. The elevation area and elevation volume curves (capacity curves) of the two lakes were developed from the digital values, describing the water resources capacity of the lake water basins. The results of this study increase our understanding of the water resources of these two lakes, as well as provide better understanding of their vulnerability to human activities because of their shallow depths. Immediate application of the results, as a basis for continuation of this study, also is highlighted. [source] The Placement of the Human Eyeball and Canthi in Craniofacial IdentificationJOURNAL OF FORENSIC SCIENCES, Issue 3 2008Carl N. Stephan Ph.D. Abstract:, An accurate understanding of the spatial relationships between the deep and superficial structures of the head is essential for anthropological methods concerned with the comparison of faces to skulls (superimposition) or the prediction of faces from them (facial approximation). However, differences of opinion exist concerning: (i) the position of the eyeball in planes other than the anteroposterior plane and (ii) the canthi positions relative to the bony orbital margins. This study attempts to clarify the above relationships by dissection of a small sample of adult human cadavers (N = 4, mean age = 83 years, s = 12 years). The most notable finding was that the eyeballs were not centrally positioned within the orbits as the more recent craniofacial identification literature expounds. Rather, the eyeballs were consistently positioned closer to the orbital roof and lateral orbital wall (by 1,2 mm on average); a finding consistent with the earlier anatomical literature. While these estimation errors are small ipsilaterally, several factors make them meaningful: (i) the orbital region is heavily used for facial recognition; (ii) the width error is doubled because the eyes are bilateral structures; (iii) the eyes are sometimes used to predict/assess other soft tissue facial structures; and (iv) the net error in facial approximation rapidly accumulates with the subsequent prediction of each independent facial feature. While the small sample size of this study limits conclusive generalizations, the new data presented here nonetheless have immediate application to craniofacial identification practice because the results are evidence based. In contrast, metric data have never been published to support the use of the central positioning guideline. Clearly, this study warrants further quantification of the eyeball position in larger samples and preferably of younger individuals. [source] Somatic Embryogenesis in Leguminous PlantsPLANT BIOLOGY, Issue 2 2000P. Lakshmanan Abstract: This review examines recent advances in the induction and development of somatic embryos in leguminous plants. Emphasis has been given to identify the current trends and successful strategies for the establishment of somatic embryogenic systems, particularly in the economically important species. It appears that, in legumes, somatic embryogenesis can be realized relatively easily especially in young meristematic tissues such as immature embryos and developing leaves. In the majority of the species examined, chlorophenoxyacetic acids remained the most active inductive compounds; however, the new generation growth regulators such as thidiazuron are emerging as successful alternatives for high-frequency direct regeneration of somatic embryos, even from well differentiated explant tissues. Low-frequency embryo production, poor germination and conversion of somatic embryos into plantlets and somaclonal variation are the major impediments limiting the utility of somatic embryogenesis for biotechnological applications in legumes. These limitations, however, may be considerably reduced in the near future, as more newly developed growth regulators with specific morphogenic targets become available for experimentation. From the published data, it is apparent that more effort should be given to develop repetitive embryogenic systems with high frequency of germination and regeneration, since such systems will find immediate application in mass propagation and other crop improvement programmes. As our understanding of various morphogenic processes, including growth and differentiation of zygotic embryos, is fast expanding, it is conceivable that development of highly efficient somatic embryogenic systems with practical application can be anticipated, at least for the important leguminous crops, in the foreseeable future. [source] Äußere Form und Innere Krankheit: Zur klinischen Fotografie im späten 19.BERICHTE ZUR WISSENSCHAFTSGESCHICHTE, Issue 2 2005Jahrhundert Abstract Clinical photography in the late 19th century aimed at unveiling the hidden processes invisible to the clinical eye. Changes in the outer form hinted at deeper lying causes, and decoding these forms was supposed to extend the range of the clinical eye into the realm of invisibility. Two suppositions supported this hope: the belief that each disease as an ontological entity showed typical exterior signs which allowed a diagnosis at sight, and the technological trust in photography as a precise and objective means of representation superior to the human eye. For a short time, clinical photography seemed to be the "via regia" of diagnosis. Heinrich Curschmann's Klinische Abbildungen and Ludwig Jankau's periodical Internationale medizinisch-photographische Monatsschrift marked the climax of this development in Germany. Röntgen's discovery and its immediate application in clinical medicine put an end to the optimistic expectations: clinical photography was from now on only one among many different means of documenting clinical signs and findings. [source] Meshless numerical simulation of (full) potential flows in a nozzle by genetic algorithmsINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 10-11 2003G. Winter Abstract A new procedure to solve some fluid problems formulated in elliptical partial differential equations is presented. A Genetic Algorithm with a dynamical encoding and a partial grid sampling is proposed for it as the advantages of solving the problem without using all grid nodes at the same time, and of adjusting step grid, without increasing the complexity. The designed method has immediate applications some self-contained and some in combination with other traditional methods. Also, it provides a method alternative to the existing ones and uses simpler operations. Theoretical mathematical foundations of the problem are easily incorporated and that as a powerful characteristic of the method. In practice, our focus is to obtain an acceptable approximated solution. The method makes it possible to solveproblems with vague boundary conditions since no algebraic equation system is involved in the process. From the solution reached we have good information available to make an appropriate mesh to solve the problem through a traditional method. Comparative results for both linear and non-linear potential flow problems inside a nozzle are given. Copyright © 2003 John Wiley & Sons, Ltd. [source] |