Immature Cells (immature + cell)

Distribution by Scientific Domains


Selected Abstracts


Expression of FGFR3 with the G380R Achondroplasia Mutation Inhibits Proliferation and Maturation of CFK2 Chondrocytic Cells

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 1 2000
Janet E. Henderson
Abstract A G380R substitution in the transmembrane-spanning region of FGFR3 (FGFR3Ach) results in constitutive receptor kinase activity and is the most common cause of achondroplastic dwarfism in humans. The epiphyseal growth plates of affected individuals are disorganized and hypocellular and show aberrant chondrocyte maturation. To examine the molecular basis of these abnormalities, we used a chondrocytic cell line, CFK2, to stably express the b variant of wild-type FGFR3 or the the constitutively active FGFR3Ach. Overexpression of FGFR3 had minimal effects on CFK2 proliferation and maturation compared with the severe growth retardation found in cells expressing FGFR3Ach. Cells expressing the mutant receptor also showed an abnormal apoptotic response to serum deprivation and failed to undergo differentiation under appropriate culture conditions. These changes were associated with altered expression of integrin subunits, which effectively led to a switch in substrate preference of the immature cell from fibronectin to type II collagen. These in vitro observations support those from in vivo studies indicating that FGFR3 mediates an inhibitory influence on chondrocyte proliferation. We now suggest that the mechanism is related to altered integrin expression. [source]


Flow cytometric differential of leukocyte populations in normal bone marrow: Influence of peripheral blood contamination1,

CYTOMETRY, Issue 1 2009
R. A. Brooimans
Abstract Background: Availability of immunophenotypic reference values for the various leukocyte populations distributed in bone marrow may be helpful to recognize abnormal bone marrow development and, therefore, useful as first screening of individuals with suspected hematological malignancies or other hematopoietic disorders. Methods: A single tube four-color staining panel (CD66abce/CD14/CD45/CD34) together with a predefined gating strategy was utilized to immunologically differentiate the distribution of the major leukocyte populations in bone marrow aspirates of healthy donors. The sample-blood erythrocyte ratio was applied to assess the amount of blood contamination of marrow and account for this in the marrow value estimates. Results: The frequency of the major leukocyte populations in bone marrow of 134 normal donors were for granulocytes: mean, 69.4%; SD, 10.3%; monocytes: mean, 4.7%; SD, 2.3%; lymphocytes: mean, 18.3%; SD, 8.7%. The frequency of the immature cell population that included precursor cells of each of the cell lineages among other cell types were mean 5.0%; SD 2.2%. The mean percentage of CD34 positive cells was 1.5%; SD 0.7%. Our results showed further that the frequency of cell populations, of which the presence is restricted to the bone marrow (e.g., CD34+ progenitor cells), is influenced by the degree of peripheral blood admixture. Between the total immature cells and purity of the bone marrow, there was a significant positive correlation demonstrated, whereas a negative correlation was found between the percentages of both lymphocytes as monocytes and the purity of the bone marrow. Conclusions: With a single tube-staining panel, we obtained reference values for flow cytometric assessment of all relevant leukocyte populations present in bone marrow that can be used as a frame of reference for better recognition of individuals with abnormal hematopoiesis. In addition, we have demonstrated the influence of the degree of peripheral blood admixture in the bone marrow aspirates on those reference values. © 2008 Clinical Cytometry Society [source]


Dlk1 expression marks developing endothelium and sites of branching morphogenesis in the mouse embryo and placenta

DEVELOPMENTAL DYNAMICS, Issue 4 2006
Aleksey Yevtodiyenko
Abstract The protein product of the Delta-like 1 (Dlk1) gene belongs to the Delta-Notch family of signaling molecules, proteins involved in cell fate determination in many tissues during development. The DLK1 protein is believed to function as a growth factor, maintaining the proliferative state of undifferentiated cells, and is usually down-regulated as immature cells differentiate. The expression pattern of the DLK1 protein has been described in certain human tissues; however, Dlk1 expression is not well understood in the mouse, the most tractable mammalian genetic model system. To better understand the role of Dlk1 in embryonic development, the tissue-specific expression pattern of Dlk1 mRNA during mouse embryogenesis was analyzed by in situ hybridization. In embryonic day 12.5 (e12.5) embryos, high levels of Dlk1 were found in the developing pituitary, pancreas, lung, adrenal, and many mesodermally derived tissues. Strikingly, Dlk1 expression also marks the growing branches of organs that develop through the process of branching morphogenesis. At e16.5, Dlk1 expression is down-regulated in most tissues but remains in the pituitary, the adrenal gland, and in skeletal muscle. In the placenta, expression of Dlk1 is detected in endothelial cells lining the fetal blood vessels of the labyrinth. This pattern is distinct from that seen in the human placenta and suggests a role for Dlk1 in regulating maternal,fetal interactions. Developmental Dynamics 235:1115,1123, 2006. © 2006 Wiley-Liss, Inc. [source]


Ultrastructural and histochemical study of the salivary glands of Aplysia depilans (Mollusca, Opisthobranchia)

ACTA ZOOLOGICA, Issue 3 2001
Alexandre Lobo-da-Cunha
Abstract The digestive system of the sea hare, Aplysia depilans, includes a pair of ribbon-shaped salivary glands. A central duct and a large blood vessel run close to each other along the length of these glands and both are surrounded by a layer of muscle cells. Three cell types form the glandular epithelium: granular cells, vacuolated cells and mucocytes. The granular cells possess cilia and spherical secretion granules, located primarily in the apical region. The granules of immature cells have a low electron density and are mainly formed by neutral polysaccharides with small amounts of proteins. The granules of mature cells are larger, have a high electron density and are mainly formed by proteins with lower amounts of neutral polysaccharides. Transition stages between immature and mature granular cells are observed. The vacuolated cells are large and frequently pyramidal in shape, but after the application of histochemical techniques almost all vacuoles remain uncoloured. The numerous vacuoles contain flocculent material in a clear background and the mitochondria possess large crystalline structures in the matrix. A pyramidal shape is also typical of the mucocytes, which are filled with vesicles containing granular masses surrounded by a network of secretion material. These large cells are strongly stained by Alcian blue, revealing the presence of acidic mucopolysaccharides. This is the first ultrastructural study of the salivary glands in opisthobranch gastropods. [source]


TNF-, induces the generation of Langerin/(CD207)+ immature Langerhans-type dendritic cells from both CD14,CD1a, and CD14+CD1a, precursors derived from CD34+ cord blood cells

EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 7 2003
Jean-François Arrighi
Abstract CD34+ cell-derived hematopoietic precursors amplified with FLT3-ligand, thrombopoietin and stem cell factor became, after a 6-day induction with GM-CSF, IL-4 and TGF-,1, HLA-DR+, CD1a+, CD83,, CD86,, CD80, cells. A fraction of them expressed Langerin, Lag, and E-cadherin, resembling epidermal Langerhans cells (LC). TNF-, addedfor the last 3,days only marginally induced CD83 expression, but strikingly increased the proportion of immature Langerin+CD83, LC. Langerin+CD83+ and Langerin+CD83, cells were functionally distinct, the former internalizing less efficiently Langerin than the latter. Both CD1a,CD14, and CD1a,CD14+ cells sorted from FLT3-ligand, thrombopoietin and stem cell factor cultures responded to TNF-, by an increase of Langerin+ cells. Thus, TNF-, rescued LC precursors irrespective of their commitment to the monocytic lineage. When added to GM-CSF, IL-4 and TGF,,1 containing-cultures, LPS or IL-1, also induced significant numbers of Langerin+CD83, immature cells displaying a low allostimulatory activity, while CD40-ligand largely promoted highly allostimulatory Langerin,CD83+ cells. Altogether, these data show that in contrast to CD40-ligand, which induced LC maturation even in presence of TGF-,1, nonspecific proinflammatory factors such as TNF-,, IL-1, or LPS, essentially induced immature LC generation, and little cell activation in the presence of TGF-,1. [source]


In vitro differentiation of lineage-negative bone marrow cells into microglia-like cells

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 7 2010
Daisuke Noto
Abstract Microglia are believed to be the only resident immune cells in the CNS, originating from hematopoietic-derived myeloid cells and invading the CNS during development. However, the detailed mechanisms of differentiation and transformation of microglial cells are not fully understood. Here, we demonstrate that murine microglial cells show two morphological forms in vitro, namely, small round cells expressing CD11b, Iba1, triggering receptor expressing on myeloid cells-2 (TREM2), and weakly expressing major histocompatibility complex class II and large flat cells expressing only CD11b and Iba1. Moreover, lineage-negative bone marrow (LN) cells cultured with primary mixed glial culture cells could differentiate into only the small round microglia-like cells, despite the absence of CCR2 and Gr-1 expression. Addition of macrophage colony stimulating factor (M-CSF) to LN cell culture allowed the proliferation and expression of TREM2 in LN cells, and the addition of neutralizing anti-M-CSF antibodies suppressed the proliferation of LN cells despite the expression of TREM2. When LN cells were cultured with M-CSF, the number of small round cells in the culture was considerably low, indicating that the small round morphology of the immature cells is not maintained in the presence of only M-CSF. On the other hand, when LN cells were grown in the presence of astrocytes, the small round cells were maintained at a concentration of approximately 30% of the total population. Therefore, cell,cell contact with glial cells, especially astrocytes, may be necessary to maintain the small round shape of the immature cells expressing TREM2. [source]


Role of the cholinergic system in regulating survival of newborn neurons in the adult mouse dentate gyrus and olfactory bulb

GENES TO CELLS, Issue 10 2006
Naoko Kaneko
Neurogenesis in the subgranular zone of the hippocampal dentate gyrus and olfactory bulbs continues into adulthood and has been implicated in the cognitive function of the adult brain. The basal forebrain cholinergic system has been suggested to play a role in regulating neurogenesis as well as learning and memory in these regions. Herein, we report that highly polysialylated neural cell adhesion molecule (PSA-NCAM)-positive immature cells as well as neuronal nuclei (NeuN)-positive mature neurons in the dentate gyrus and olfactory bulb express multiple acetylcholine receptor subunits and make contact with cholinergic fibers. To examine the function of acetylcholine in neurogenesis, we used donepezil (Aricept), a potent and selective acetylcholinesterase inhibitor that improves cognitive impairment in Alzheimer's disease. Intraperitoneal administrations of donepezil significantly enhanced the survival of newborn neurons, but not proliferation of neural progenitor cells in the subgranular zone or the subventricular zone of normal mice. Moreover, donepezil treatment reversed the chronic stress-induced decrease in neurogenesis. Taken together, these results suggest that activation of the cholinergic system promotes survival of newborn neurons in the adult dentate gyrus and olfactory bulb under both normal and stressed conditions. [source]


The expression of tubulin polymerization promoting protein TPPP/p25, is developmentally regulated in cultured rat brain oligodendrocytes and affected by proteolytic stress

GLIA, Issue 16 2008
Olaf Goldbaum
Abstract The tubulin polymerization-promoting protein (TPPP)/p25, was identified as a brain specific protein, is associated with microtubules (MTs) in vitro and can promote abnormal MT assembly. Furthermore it has aggregation promoting properties and is a constituent in pathological protein deposits of neurodegenerative diseases. In the brain, TPPP/p25, is present in myelinating oligodendrocytes. Here we show, using cultured rat brain oligodendrocytes, that TPPP/p25, expression is increasing during development in culture, and particularly in immature cells is associated with the centrosome. MT binding properties in oligodendrocytes are rather low, however, when MTs are disassembled by nocodazole, TPPP/p25, accumulates in the perinuclear region. Treatment of oligodendrocytes with the proteasomal inhibitor MG-132 (1 ,M; 18 h) caused an increase in the amount of TPPP/p25, by about 40%, a decrease in its solubility, and led to the appearance of TPPP/p25,-positive cytoplasmic inclusions, which stained with thioflavin S and resembled inclusion bodies. Hence, it might be speculated that acute or chronic malfunction of the proteasomal degradation system, leading to the accumulation of aggregation prone proteins and the pro-aggregatory protein TPPP/p25, or to the aggregation of TPPP/p25, on its own, is causally related to the protein aggregation process in a variety of neurodegenerative diseases. © 2008 Wiley-Liss, Inc. [source]


Performance evaluation of the PENTRA 60C+ automated hematology analyzer and comparison with the ADVIA 2120

INTERNATIONAL JOURNAL OF LABORATORY HEMATOLOGY, Issue 2 2009
K. GUERTI
Summary The PENTRA 60C+ hematology analyzer provides a complete blood cell (CBC) count, including a five-part differential (5-DIFF) count and two leukocyte subpopulations, i.e. large immature cells (LIC's) and atypical lymphocytes (ALY's). We evaluated its analytical performance and assessed agreement with the ADVIA 2120, in order to install the analyzer in a small satellite hematology laboratory. First we assessed repeatability, reproducibility and carry-over to evaluate the analytical performance. Then we used Pearson correlation coefficients, Passing and Bablok regression analysis and a graphical approach (n = 209) to evaluate agreement with the ADVIA 2120. Repeatability and reproducibility were excellent for the majority of CBC and 5-DIFF count parameters. Carry-over was negligible. Our data showed very good correlation for most CBC count parameters. Lower correlation coefficients were observed for red cell distribution width, mean corpuscular volume and mean platelet volume. As compared to the ADVIA 2120, the 5-DIFF count performed very well. Agreement was poorer for low-level eosinophils and basophils. Furthermore, the PENTRA 60C+ was equally able to identify pathological blood samples through the determination of LIC's and ALY's. Therefore, the PENTRA 60C+ is an eligible blood cell counter to be operational in a satellite laboratory setting. [source]


Determination of peripheral blood stem cells by the Sysmex SE-9500

INTERNATIONAL JOURNAL OF LABORATORY HEMATOLOGY, Issue 4 2001
Liming Peng
The Sysmex SE-9500 automated haematology analyser provides an estimate of immature cells, referred to as ,haematopoietic progenitor cells' (HPC). The aim of this study was to evaluate the reliability and usefulness of the SE-9500 HPC parameter as compared with the CD34 + cell count and to determine whether the HPC count was of value in predicting the optimal harvesting time for peripheral blood stem cells (PBSC). Studies were performed on 112 samples from 21 patients with haematological malignancies and 13 healthy donors undergoing progenitor cell mobilisation. Coefficients of variation for the HPC count were 30%, 23.8%, 12.4% and 8.3% respectively for samples with low (4 × 106/l), medium (13 × 106/l), high (250 × 106/l) and very high (2413 × 106/l) counts. There was good linearity for HPC measurement in both peripheral blood (PB) and purified CD34 + cell suspensions (r > 0.995), and no detectable carryover was observed. There was an acceptable correlation between HPC and CD34 + cell counts for PB samples (r=0.669) and for CD34 + cell suspensions (r=0.859). Analysis of purified CD34 + cells using the SE-9500 HPC mode revealed that they appear both in the blast cell area and the immature granulocyte area of the analyser cell display. Quantitation of CD34 + cells and HPC during PBSC mobilisation showed good agreement between these parameters with regard to the optimal time for PBSC harvesting. These findings suggest that HPC counting with the Sysmex SE-9500 may be clinically useful for optimising the timing of PBSC collection. [source]


Novel stem/progenitor cells with neuronal differentiation potential reside in the leptomeningeal niche

JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, Issue 9b 2009
Francesco Bifari
Abstract Stem cells capable of generating neural differentiated cells are recognized by the expression of nestin and reside in specific regions of the brain, namely, hippocampus, subventricular zone and olfactory bulb. For other brain structures, such as leptomeninges, which contribute to the correct cortex development and functions, there is no evidence so far that they may contain stem/precursor cells. In this work, we show for the first time that nestin-positive cells are present in rat leptomeninges during development up to adulthood. The newly identified nestin-positive cells can be extracted and expanded in vitro both as neurospheres, displaying high similarity with subventricular zone,derived neural stem cells, and as homogeneous cell population with stem cell features. In vitro expanded stem cell population can differentiate with high efficiency into excitable cells with neuronal phenotype and morphology. Once injected into the adult brain, these cells survive and differentiate into neurons, thus showing that their neuronal differentiation potential is operational also in vivo. In conclusion, our data provide evidence that a specific population of immature cells endowed of neuronal differentiation potential is resident in the leptomeninges throughout the life. As leptomeninges cover the entire central nervous system, these findings could have relevant implications for studies on cortical development and for regenerative medicine applied to neurological disorders. [source]


Ex vivo differentiation of umbilical cord blood progenitor cells in the presence of placental conditioned medium

JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, Issue 4 2002
Mihaela Chivu
Abstract Hematopoetic stem cells (HSC) are the progenitors for the lympho-hematopoietic system, with long lifespan and high proliferation potential. Transplantation of HSC from bone marrow or peripheral blood represents a standard therapy in severe hematological conditions. A possible alternative source of HSC is the umbilical cord blood, prepared by various separation procedures followed by expansion in cultures supplemented with hematopoietic growth factors. In order to check the effects of placental conditioned medium (PCM) from placental cells culture upon viability of HSC, we added plasma, PCM, dimetil sulfoxyde or hemin in HSC cultures. Flow cytometry or direct scoring of solid cultures using CD45+, CD34+, CD71+ and CD14+ fluorescent-labeled monoclonal antibodies evaluated the effects upon cell proliferation and colony forming ability of HSC cultures, versus controls. PCM produced the highest proliferation, followed by plasma, DMSO and hemin. PCM improved the survival time and maintained a higher proportion of immature cells. PCM stimulates the differentiation towards myeloid lineage progenitor cells (>90% being CD45+), increasing the percentage of CD14+, granulocites /monocytes precursors. It is highly suggestive that PCM contains growth factors or cytokines, which regulate the development of HSC. Characterization of these factors is in progress. [source]


Ex vivo expansion of apheresis-derived peripheral blood hematopoietic progenitors

JOURNAL OF CLINICAL APHERESIS, Issue 1 2002
Zeev Estrov
Because the administration of hematopoietic growth factors and the use of stem cell support often fails to alleviate the neutropenic phase induced by cytotoxic drugs, several investigators have attempted to expand ex vivo hematopoietic progenitors for clinical use. These attempts have clearly shown that the cultured cells are functional and can be safely administered to patients, but that the in vivo performance is disappointing and the concept as a whole is not yet clinically useful. The major reasons for these unsuccessful attempts are thought to be cumbersome cell fractionation techniques, contamination, prolonged incubation, and the use of less than ideal cytokine combinations. In response, we have developed a simple procedure for ex vivo expansion of myeloid progenitor cells. In this assay, unfractionated mononuclear cells from apheresis donors are incubated in nonpyrogenic plastic bags for 7 days in the presence of culture medium either containing fetal calf serum or human plasma, granulocyte colony-stimulating factor, and stem cell factor. We have demonstrated that under these conditions the number of colony-forming units (CFU) granulocyte-macrophage (CFU-GM) and of CFU-granulocyte-macrophage-erythroid-megakaryocyte (CFU-GEMM) increased 7- and 9-fold, respectively, by day 7 and the number of burst-forming units-erythroid (BFU-E) increased 2.7-fold by day 5 of culture. Significant increases in the numbers of cells expressing CD34+, CD34+/CD38+, CD34+/CD33+, CD34+/CD15+, and CD34+/CD90+ and significant declines in the numbers of cells expressing CD34+/CD38- and CD19 surface antigens were also observed. The relative numbers of cells expressing T-cell markers and CD56 surface antigen did not change. By using different concentrations of various hematopoietic growth factor combinations, we can increase the number of mature and immature cells of different hematopoietic lineages. J. Clin. Apheresis 17:7,16, 2002. © 2002 Wiley-Liss, Inc. [source]


Functional hepatic recovery after xenotransplantation of cryopreserved fetal liver cells or soluble cell-factor administration in a cirrhotic rat model: Are viable cells necessary?

JOURNAL OF GASTROENTEROLOGY AND HEPATOLOGY, Issue 7pt2 2008
Olga V Ochenashko
Abstract Background and Aim:, Chronic liver failure results in the decrease of the number of functioning hepatocytes. It dictates the necessity of using exogenous viable cells or/and agents that can stimulate hepatic regenerative processes. Fetal liver contains both hepatic and hematopoietic stem cells with high proliferative potential, which may replace damaged cells. Also, immature cells produce fetal-specific factors which may support the injured liver. Our aim was to test the ability of human fetal liver cells and cell-free fetal-specific factors of non-hepatic origin to stimulate recovery processes in an experimental model of carbon tetrachloride,induced cirrhosis in rats. Methods:, Cirrhotic rats were intrasplenically injected with fetal liver cells (1 × 107 cells/0.3 mL medium) or cell-free fetal-specific factors (0.3 mL/1 mg protein). Control groups received medium alone. Serum indexes, hepatic functions, and morphology were evaluated for 15 days. Result:, Human fetal liver cell transplantation was shown to abrogate the mortality of cirrhotic animals, to improve serum markers, and to restore liver mitochondrial function and detoxification. Morphological patterns of liver recovery were observed by histology. In comparison, an injection of fetal-specific factors produced similar functional recovery, whilst a more limited liver regeneration was observed by histology. Conclusions:, The positive effects of fetal liver cell and cell-free fetal-specific factors in experimental cirrhosis may result from the presence of stage-specific factors activating hepatocellular repair. [source]


Adult human spinal cord harbors neural precursor cells that generate neurons and glial cells in vitro

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 9 2008
C. Dromard
Abstract Adult human and rodent brains contain neural stem and progenitor cells, and the presence of neural stem cells in the adult rodent spinal cord has also been described. Here, using electron microscopy, expression of neural precursor cell markers, and cell culture, we investigated whether neural precursor cells are also present in adult human spinal cord. In well-preserved nonpathological post-mortem human adult spinal cord, nestin, Sox2, GFAP, CD15, Nkx6.1, and PSA-NCAM were found to be expressed heterogeneously by cells located around the central canal. Ultrastructural analysis revealed the existence of immature cells close to the ependymal cells, which display characteristics of type B and C cells found in the adult rodent brain subventricular region, which are considered to be stem and progenitor cells, respectively. Completely dissociated spinal cord cells reproducibly formed Sox2+ nestin+ neurospheres containing proliferative precursor cells. On differentiation, these generate glial cells and ,-aminobutyric acid (GABA)-ergic neurons. These results provide the first evidence for the existence in the adult human spinal cord of neural precursors with the potential to differentiate into neurons and glia. They represent a major interest for endogenous regeneration of spinal cord after trauma and in degenerative diseases. © 2008 Wiley-Liss, Inc. [source]


Biodistribution of the RD114/mammalian type D retrovirus receptor, RDR

THE JOURNAL OF GENE MEDICINE, Issue 3 2004
Bronwyn J. Green
Abstract Background The limited expression of viral receptors on target cells is a recognized barrier to therapeutic gene transfer. Previous analysis of receptor expression has been performed using indirect methods due to a lack of receptor-specific antibodies. Methods In this report we have used anti-RDR antiserum to provide direct histochemical and flow cytometric analysis of the expression of RDR, which is the cognate receptor for RD114-pseudotyped vectors as well as being a neutral amino acid transporter. Results RDR was present on a range of normal tissues with relevance to gene therapy including: colon, testis, ovary, bone marrow and skeletal muscle. It was also highly expressed on immature cells present in the squamous epithelia of skin, cervix, nasal mucosa, bronchus and tonsil. Of relevance to possible germline gene transfer, we demonstrated a lack of RDR expression on male or female germ cells. RDR expression on mature hemopoietic cell subsets showed up to 5-fold variability between individuals within each lineage,with some individuals expressing low levels of RDR across all blood lineages. Both myeloid and monocytic lineages contained the highest fraction of cells expressing RDR, whereas lymphoid lineages showed the lowest. Coexpression of CD34 and RDR ranged from 2.04 to 0.44% in G-CSF-mobilized peripheral blood samples. Conclusions As a means to optimize gene transfer protocols, biodistribution studies such as these are fundamental to enable targeting of the virus receptor most abundantly expressed on relevant populations. The inter-individual variation of receptor expression seen here also raises the possible requirement for tailor-made gene therapy protocols. Copyright © 2004 John Wiley & Sons, Ltd. [source]


Resolving and classifying haematopoietic bone-marrow cell populations by multi-dimensional analysis of flow-cytometry data

BRITISH JOURNAL OF HAEMATOLOGY, Issue 3 2005
Eli Zamir
Summary The study of normal or malignant haematopoiesis requires the analysis of heterogeneous cell populations using multiple morphological and molecular criteria. Flow cytometry has the capacity to acquire multi-parameter information of large haematopoietic cell populations, utilizing various combinations of >200 molecular markers (clusters of differentiation, CD). However, current flow cytometry analyses are based on serial gating of two-parametric scatter plots , a process that is inherently incapable to discriminate all subgroups of cells in the data. Here we studied the cellular diversity of normal bone marrows (BM) using multi-dimensional cluster analysis of six-parametric flow cytometry data (four CD, forward scatter and side scatter), focusing mainly on the myeloid lineage. Twenty-three subclasses of cells were resolved, many of them inseparable even when examined in all possible two-parametric scatter plots. The multi-dimensional analysis could distinguish the haematopoietic progenitors according to International Society of Haematotherapy and Graft Engineering criteria from other types of immature cells. Based on the defined clusters, we designed a classifier that assigns BM cells in samples to subclasses based on robust six-dimensional position and extended shape. The analysis presented here can manage successfully both the increasing numbers of haematopoietic cellular markers and sample heterogeneity. This should enhance the ability to study normal haematopoiesis, and to identify and monitor haematopoietic disorders. [source]