Immature Brain (immature + brain)

Distribution by Scientific Domains


Selected Abstracts


Maturational Aspects of Epilepsy Mechanisms and Consequences for the Immature Brain

EPILEPSIA, Issue 5 2001
Russell M. Sanchez
First page of article [source]


Models of white matter injury: Comparison of infectious, hypoxic-ischemic, and excitotoxic insults

DEVELOPMENTAL DISABILITIES RESEARCH REVIEW, Issue 1 2002
Henrik Hagberg
Abstract White matter damage (WMD) in preterm neonates is strongly associated with adverse outcome. The etiology of white matter injury is not known but clinical data suggest that ischemia-reperfusion and/or infection-inflammation are important factors. Furthermore, antenatal infection seems to be an important risk factor for brain injury in term infants. In order to explore the pathophysiological mechanisms of WMD and to better understand how infectious agents may affect the vulnerability of the immature brain to injury, numerous novel animal models have been developed over the past decade. WMD can be induced by antenatal or postnatal administration of microbes (E. coli or Gardnerella vaginalis), virus (border disease virus) or bacterial products (lipopolysaccharide, LPS). Alternatively, various hypoperfusion paradigms or administration of excitatory amino acid receptor agonists (excitotoxicity models) can be used. Irrespective of which insult is utilized, the maturational age of the CNS and choice of species seem critical. Generally, lesions with similarity to human WMD, with respect to distribution and morphological characteristics, are easier to induce in gyrencephalic species (rabbits, dogs, cats and sheep) than in rodents. Recently, however, models have been developed in rats (PND 1,7), using either bilateral carotid occlusion or combined hypoxia-ischemia, that produce predominantly white matter lesions. LPS is the infectious agent most often used to produce WMD in immature dogs, cats, or fetal sheep. The mechanism whereby LPS induces brain injury is not completely understood but involves activation of toll-like receptor 4 on immune cells with initiation of a generalized inflammatory response resulting in systemic hypoglycemia, perturbation of coagulation, cerebral hypoperfusion, and activation of inflammatory cells in the CNS. LPS and umbilical cord occlusion both produce WMD with quite similar distribution in 65% gestational sheep. The morphological appearance is different, however, with a more pronounced infiltration of inflammatory cells into the brain and focal microglia/macrophage ("inflammatory WMD") in response to LPS compared to hypoperfusion evoking a more diffuse microglial response usually devoid of cellular infiltrates ("ischemic WMD"). Furthermore, low doses of LPS that by themselves have no adverse effects in 7-day-old rats (maturation corresponding to the near term human fetus), dramatically increase brain injury to a subsequent hypoxic-ischemic challenge, implicating that bacterial products can sensitize the immature CNS. Contrary to this finding, other bacterial agents like lipoteichoic acid were recently shown to induce tolerance of the immature brain suggesting that the innate immune system may respond differently to various ligands, which needs to be further explored. MRDD Research Reviews 2002;8:30,38. © 2002 Wiley-Liss, Inc. [source]


Role of cortical dysplasia in epileptogenesis following prolonged febrile seizure

EPILEPSIA, Issue 9 2010
Kyung-Il Park
Summary Purpose:, Hippocampal sclerosis, characterized by prominent neuronal loss and reactive gliosis, is the most common pathology in human temporal lobe epilepsy (TLE). Although prolonged febrile convulsion (FC) is a risk factor of TLE, it is not clear whether FC provokes hippocampal sclerosis and subsequent TLE. Given that underlying brain lesions, such as cortical dysplasia (CD), in the immature brain predispose patients to FC, CD may link FC and TLE. However, the role of CD in epileptogenesis after FC is also unclear. Here, we investigated whether inborn CD increases the risk of later epilepsy induced by prolonged FC using a rat model. Methods:, Experimental CD was induced by in utero exposure of methylazoxymethanol (MAM). Rat pups from MAM-treated or control rats were then subjected to prolonged FC. We examined morphologic changes in the hippocampi with respect to neuronal loss, reactive gliosis, and synaptogenesis, and evaluated spontaneous recurrent seizures (SRS) by long-term video-EEG (electroencephalography). Results:, The MAM+FC group had a significantly lower hippocampal neuronal density in the CA1 and dentate hilus than other control groups. A robust increase in glial cells and synaptic reorganization was also detected in the MAM+FC groups. Furthermore, later SRS occurred in all rats in the MAM+FC group and in 50% and 25% of the rats in the FC-only and MAM-only group, respectively. The frequency and total duration of SRS was highest in the MAM+FC group. Discussion:, Our results suggest that preexisting CD in the immature brain augments the proepileptogenic effects of prolonged FC, leading to TLE. [source]


Distinct caspase pathways mediate necrosis and apoptosis in subpopulations of hippocampal neurons after status epilepticus

EPILEPSIA, Issue 2010
Maria-Leonor Lopez-Meraz
Summary Status epilepticus in the immature brain induces neuronal injury in the hippocampal formation, but the mode and mechanism of death are poorly understood. Our laboratory has recently investigated the role of caspase-3, -8, and -9 in neuronal injury, using a lithium,pilocarpine model of status epilepticus in 2-week-old rat pups. Our results showed that dying neurons in the dentate gyrus and CA1-subiculum area do not share the same mechanism of death. In CA1-subiculum, caspase-8 upregulation preceded caspase-3 activation in morphologically necrotic neurons. The pan-caspase inhibitor Q-VD-OPH reduced CA1 damage, showing that caspases contribute to status epilepticus,induced necrosis. In the dentate gyrus, dying neurons were caspase-9 and -3 immunoreactive and morphologically apoptotic. It is not clear why the same seizures cause different types of cell death in neurons that are connected in series along the same hippocampal circuit, but the apoptotic dentate neurons express doublecortin, and do not express calbindin-D28k, suggesting that their immaturity may be a factor in producing an apoptotic mode of death. [source]


Protective effects of naloxone in two-hit seizure model

EPILEPSIA, Issue 3 2010
Lu Yang
Summary Purpose:, Early life status epilepticus (SE) could enhance the vulnerability of the immature brain to a second SE in adulthood (two-hit seizure model). Naloxone has been proved to possess inflammation inhibitory effects in nervous system. This study was designed to evaluate the dose-dependent protective effects of naloxone in kainic acid (KA),induced two-hit seizure model. Methods:, After KA-induced SE at postnatal day 15 (P15), Sprague-Dawley rats were infused with either saline or different doses (1.92, 3.84, 5.76, and 7.68 mg/kg) of naloxone continuously for 12 h. De novo synthesis of cytokines (interleukin-1, [IL-1,], S100B) was assessed by real-time polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay (ELISA) at 12 h after P15 SE. Glial activation states were analyzed by western blotting of glial markers (glial fibrillary acidic protein [GFAP], S100B, Iba1) both at 12 h after P15 SE and at P45. After a second SE at P45, cognitive deteriorations were evaluated by Morris water tests and neuron injuries were evaluated by TdT-mediated dUTP nick end labeling (TUNEL) assays. Results:, Naloxone reduced IL-1, synthesis and microglial activation most potently at a dose of 3.84 mg/kg. Attenuation of S100B synthesis and astrocyte activation were achieved most dramatically by naloxone at a dose of 5.76 mg/kg, which is equal to the most powerful dose in ameliorating cognitive injuries and neuron apoptosis after second SE. Conclusions:, Naloxone treatment immediately after early life SE could dose-dependently reduce cytokine production, glial activation, and further lower the vulnerability of immature brains to a second hit in adulthood. [source]


Pentylenetetrazol-induced Recurrent Seizures in Rat Pups: Time Course on Spatial Learning and Long-term Effects

EPILEPSIA, Issue 6 2002
Li-Tung Huang
Summary: ,Purpose: Recurrent seizures in infants are associated with a high incidence of neurocognitive deficits. Animal models have suggested that the immature brain is less vulnerable to seizure-induced injury than is that in adult animals. We studied the effects of recurrent neonatal seizures on cognitive tasks performed when the animals were in adolescence and adulthood. Methods: Seizures were induced by intraperitoneal injection of pentylenetetrazol (PTZ) for 5 consecutive days, starting from postnatal day 10 (P10). At P35 and P60, rats were tested for spatial memory by using the Morris water maze task. In adulthood, motor performance was examined by the Rotarod test, and activity level was assessed by the open field test. Seizure threshold was examined by inhalant flurothyl. To assess presence or absence of spontaneous seizures, rats were video recorded for 4 h/day for 10 consecutive days for the detection of spontaneous seizures. Finally, brains were examined for histologic evidence of injury with cresyl violet stain and Timm staining in the supragranular zone and CA3 pyramidal cell layers of the hippocampus. Results: PTZ-treated rats showed significant spatial deficits in the Morris water maze at both P35 and P60. There were no differences in seizure threshold, motor balance, or activity level during the open field test. Spontaneous seizures were not recorded in any rat. The cresyl violet stain showed no cell loss in either the control or experimental rats. PTZ-treated rats exhibited more Timm staining in the CA3 subfield. However, the control and experimental rats showed similar Timm staining within the supragranular zone. Conclusions: Our findings indicate that recurrent PTZ-induced seizures result in long-term cognitive deficits and morphologic changes in the developing brain. Furthermore, these cognitive deficits could be detected during pubescence. [source]


Extracellular signal-regulated kinase activation is required for consolidation and reconsolidation of memory at an early stage of ontogenesis

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 10 2009
Solène Languille
Abstract The ability to form long-term memories exists very early during ontogeny; however, the properties of early memory processes, brain structures involved and underlying cellular mechanisms are poorly defined. Here, we examine the role of extracellular signal-regulated kinase (ERK), a member of the mitogen-activated protein kinase/ERK signaling cascade, which is crucial for adult memory, in the consolidation and reconsolidation of an early memory using a conditioned taste aversion paradigm in 3-day-old rat pups. We show that intraperitoneal injection of SL327, the upstream mitogen-activated protein kinase kinase inhibitor, impairs both consolidation and reconsolidation of early memory, leaving short-term memory after acquisition and after reactivation intact. The amnesic effect of SL327 diminishes with increasing delays after acquisition and reactivation. Biochemical analyses revealed ERK hyperphosphorylation in the amygdala but not the hippocampus following acquisition, suggesting functional activation of the amygdala as early as post-natal day 3, although there was no clear evidence for amygdalar ERK activation after reactivation. These results indicate that, despite an immature brain, the basic properties of memory and at least some of the molecular mechanisms and brain structures implicated in aversion memory share a number of similarities with the adult and emerge very early during ontogeny. [source]


Neuroimaging of cortical development and brain connectivity in human newborns and animal models

JOURNAL OF ANATOMY, Issue 4 2010
Gregory A. Lodygensky
Abstract Significant human brain growth occurs during the third trimester, with a doubling of whole brain volume and a fourfold increase of cortical gray matter volume. This is also the time period during which cortical folding and gyrification take place. Conditions such as intrauterine growth restriction, prematurity and cerebral white matter injury have been shown to affect brain growth including specific structures such as the hippocampus, with subsequent potentially permanent functional consequences. The use of 3D magnetic resonance imaging (MRI) and dedicated postprocessing tools to measure brain tissue volumes (cerebral cortical gray matter, white matter), surface and sulcation index can elucidate phenotypes associated with early behavior development. The use of diffusion tensor imaging can further help in assessing microstructural changes within the cerebral white matter and the establishment of brain connectivity. Finally, the use of functional MRI and resting-state functional MRI connectivity allows exploration of the impact of adverse conditions on functional brain connectivity in vivo. Results from studies using these methods have for the first time illustrated the structural impact of antenatal conditions and neonatal intensive care on the functional brain deficits observed after premature birth. In order to study the pathophysiology of these adverse conditions, MRI has also been used in conjunction with histology in animal models of injury in the immature brain. Understanding the histological substrate of brain injury seen on MRI provides new insights into the immature brain, mechanisms of injury and their imaging phenotype. [source]


Proton spectroscopic metabolite signal relaxation times in preterm infants: A prerequisite for quantitative spectroscopy in infant brain

JOURNAL OF MAGNETIC RESONANCE IMAGING, Issue 6 2003
Harald Kugel PhD
Abstract Purpose To determine relaxation times of metabolite signals in proton magnetic resonance (MR) spectra of immature brain, which allow a correction of relaxation that is necessary for a quantitative evaluation of spectra acquired with long TE. Proton MR spectra acquired with long TE allow a better definition of metabolites as N-acetyl aspartate (NAA) and lactate especially in children. Materials and Methods Relaxation times were determined in the basal ganglia of 84 prematurely born infants at a postconceptional age of 37.8 ± 2.2 (mean ± SD) weeks. Metabolite resonances were investigated using the double-spin-echo volume selection method (PRESS) at 1.5 T. T1 was determined from intensity ratios of signals obtained with TRs of 1884 and 6000 msec, measured at 3 TEs (25 msec, 136 msec, 272 msec). T2 was determined from signal intensity ratios obtained with TEs of 136 msec and 272 msec, measured at 2 TR. Taking only long TEs reduced baseline distortions by macromolecules and lipids. For myo-inositol (MI), an apparent T2 for short TE was determined from the ratio of signals obtained with TE = 25 msec and 136 msec. Intensities were determined by fitting a Lorentzian to the resonance, and by integration. Results Relaxation times were as follows: trimethylamine-containing compounds (Cho): T1 = 1217 msec/T2 = 273 msec; total creatine (Cr) at 3.9 ppm: 1010 msec/111 msec; Cr at 3.0 ppm: 1388 msec/224 msec; NAA: 1171 msec/499 msec; Lac: 1820 msec/1022 msec; MI: 1336 msec/173 msec; apparent T2 at short TE: 68 msec. Conclusion T1 and T2 in the basal ganglia of premature infants do not differ much from previously published data from basal ganglia of older children and adults. T2 of Cho was lower than previous values. T2 of Cr at 3.9 ppm and Lac have been measured under different conditions before, and present values differ from these data. J. Magn. Reson. Imaging 2003;17:634,640. © 2003 Wiley-Liss, Inc. [source]


Mitochondrial dysfunction early after traumatic brain injury in immature rats

JOURNAL OF NEUROCHEMISTRY, Issue 5 2007
Courtney L. Robertson
Abstract Mitochondria play central roles in acute brain injury; however, little is known about mitochondrial function following traumatic brain injury (TBI) to the immature brain. We hypothesized that TBI would cause mitochondrial dysfunction early (<4 h) after injury. Immature rats underwent controlled cortical impact (CCI) or sham injury to the left cortex, and mitochondria were isolated from both hemispheres at 1 and 4 h after TBI. Rates of phosphorylating (State 3) and resting (State 4) respiration were measured with and without bovine serum albumin. The respiratory control ratio was calculated (State 3/State 4). Rates of mitochondrial H2O2 production, pyruvate dehydrogenase complex enzyme activity, and cytochrome c content were measured. Mitochondrial State 4 rates (ipsilateral/contralateral ratios) were higher after TBI at 1 h, which was reversed with bovine serum albumin. Four hours after TBI, pyruvate dehydrogenase complex activity and cytochrome c content (ipsilateral/contralateral ratios) were lower in TBI mitochondria. These data demonstrate abnormal mitochondrial function early (,4 h) after TBI in the developing brain. Future studies directed at reversing mitochondrial abnormalities could guide neuroprotective interventions after pediatric TBI. [source]


Expression and identification of a new splice variant of neuroglycan C, a transmembrane chondroitin sulfate proteoglycan, in the human brain

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 1 2006
Sachiko Aono
Abstract Neuroglycan C (NGC) is a transmembrane chondroitin sulfate proteoglycan with an EGF module. We studied the expression of NGC in the human brain, mainly in the hippocampus, and confirmed some observations by conducting experiments using rat brain. In humans, NGC mRNA was expressed exclusively in the brain, especially in the immature brain. The telencephalon, including the hippocampus and neocortex, showed strong mRNA expression. NGC was immunolocalized to neuropils in the hippocampus and neocortex of the adult rat. RT-PCR experiments showed that four splice variants (NGC-I, -II, -III, and -IV) were expressed in the adult human hippocampus. By Western blotting, the expression as proteins of all splice variants except NGC-II was confirmed in the adult rat hippocampus. NGC-IV, which was first found in the present study, had the shortest cytoplasmic domain among the four variants. NGC-IV mRNA was expressed by neurons, but not by astrocytes, in culture prepared from the fetal rat hippocampus, suggesting that NGC-IV plays a role specific to neurons. In addition, the human NGC gene, which is registered as CSPG5, comprised six exons and was approximately 19 kb in size. In exon 2, a single nucleotide polymorphism resulting in Val188Gly in the NGC ectodomain was observed. © 2005 Wiley-Liss, Inc. [source]


Glutathione peroxidase activity modulates recovery in the injured immature brain,

ANNALS OF NEUROLOGY, Issue 5 2009
Kyoko Tsuru-Aoyagi MD
Objective Mice subjected to traumatic brain injury at postnatal day 21 show emerging cognitive deficits that coincide with hippocampal neuronal loss. Here we consider glutathione peroxidase (GPx) activity as a determinant of recovery in the injured immature brain. Methods Wild-type and transgenic (GPxTg) mice overexpressing GPx were subjected to traumatic brain injury or sham surgery at postnatal day 21. Animals were killed acutely (3 or 24 hours after injury) to assess oxidative stress and cell injury in the hippocampus or 4 months after injury after behavioral assessments. Results In the acutely injured brains, a reduction in oxidative stress markers including nitrotyrosine was seen in the injured GPxTg group relative to wild-type control mice. In contrast, cell injury, with marked vulnerability in the dentate gyrus, was apparent despite no differences between genotypes. Magnetic resonance imaging demonstrated an emerging cortical lesion during brain maturation that was also indistinguishable between injured genotypes. Stereological analyses of cortical volumes likewise confirmed no genotypic differences between injured groups. However, behavioral tests beginning 3 months after injury demonstrated improved spatial memory learning in the GPxTg group. Moreover, stereological analysis within hippocampal subregions demonstrated a significantly greater number of neurons within the dentate of the GPx group. Interpretation Our results implicate GPx in recovery of spatial memory after traumatic brain injury. This recovery may be attributed, in part, to a reduction in early oxidative stress and selective, long-term sparing of neurons in the dentate. Ann Neurol 2009;65:540,549 [source]


Sustained neocortical neurogenesis after neonatal hypoxic/ischemic injury

ANNALS OF NEUROLOGY, Issue 3 2007
Zhengang Yang PhD
Objective Neocortical neurons are sensitive to hypoxic-ischemic (H-I) injuries at term and their demise contributes to neurological disorders. Here we tested the hypothesis that the subventricular zone of the immature brain regenerates neocortical neurons, and that this response is sustained. Methods Systemic injections of 5-bromo-2,-deoxyuridine (BrdU) and intraventricular injections of replication-deficient retroviruses were used to label newly born cells, and confocal microscopy after immunofluorescence was used to phenotype the new cells from several days to several months after perinatal H-I in the postnatal day 6 rat. Quantitative polymerase chain reaction was used to evaluate chemoattractants, growth factors, and receptors. Results Robust production of new neocortical neurons after perinatal H-I occurs. These new neurons are descendants of the subventricular zone, and they colonize the cell-sparse columns produced by the injury to the neocortex. These columns are populated by reactive astrocytes and microglia. Surprisingly, this neuronogenesis is sustained for months. Molecular analyses demonstrated increased neocortical production of insulin-like growth factor-1 and monocyte chemoattractant factor-1 (but statistically insignificant production of erythropoietin, brain-derived neurotrophic factor, glial-derived neurotrophic factor, and transforming growth factor-,). Interpretation The young nervous system has long been known to possess a greater capacity to recover from injury than the adult system. Our data indicate that H-I injury in the neonatal brain initiates an enduring regenerative response from the subventricular zone. These data suggest that additional mechanisms than those previously surmised contribute to the remarkable ability of the immature brain to recover from injury. Ann Neurol 2007 [source]


Stroke Induces Histamine Accumulation and Mast Cell Degranulation in the Neonatal Rat Brain

BRAIN PATHOLOGY, Issue 1 2008
V. Biran
Inflammatory processes are a major cause of hypoxic-ischemic brain damage. The present study focuses on both the cerebral histamine system and mast cells in a model of transient focal ischemia induced by permanent left middle cerebral artery, and homolateral transient common carotid artery occlusion (50 minutes) in the P7 newborn rat. Immunohistochemical analysis revealed that ischemia induces histamine (HA) accumulation in the core of the infarct 6,12 h post-ischemia, and in the penumbra at 24,48 h, although in situ hybridization failed to detect any histidine decarboxylase gene transcripts in these regions. Immunohistochemical co-localization of HA with the MAP2 marker revealed that HA accumulates in neuronal cells before they degenerate, and is accompanied by a very significant increase in the number of mast cells at 12 h and 48 h of reperfusion. In mast cells, histamine immunoreactivity is detected at 2, 6 and 12 h after ischemia, whereas it disappears at 24 h, when a concomitant degranulation of mast cells is observed. Taken together, these data suggest that the recruitment of cerebral mast cells releasing histamine may contribute to ischemia-induced neuronal death in the immature brain. [source]


Protective effects of naloxone in two-hit seizure model

EPILEPSIA, Issue 3 2010
Lu Yang
Summary Purpose:, Early life status epilepticus (SE) could enhance the vulnerability of the immature brain to a second SE in adulthood (two-hit seizure model). Naloxone has been proved to possess inflammation inhibitory effects in nervous system. This study was designed to evaluate the dose-dependent protective effects of naloxone in kainic acid (KA),induced two-hit seizure model. Methods:, After KA-induced SE at postnatal day 15 (P15), Sprague-Dawley rats were infused with either saline or different doses (1.92, 3.84, 5.76, and 7.68 mg/kg) of naloxone continuously for 12 h. De novo synthesis of cytokines (interleukin-1, [IL-1,], S100B) was assessed by real-time polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay (ELISA) at 12 h after P15 SE. Glial activation states were analyzed by western blotting of glial markers (glial fibrillary acidic protein [GFAP], S100B, Iba1) both at 12 h after P15 SE and at P45. After a second SE at P45, cognitive deteriorations were evaluated by Morris water tests and neuron injuries were evaluated by TdT-mediated dUTP nick end labeling (TUNEL) assays. Results:, Naloxone reduced IL-1, synthesis and microglial activation most potently at a dose of 3.84 mg/kg. Attenuation of S100B synthesis and astrocyte activation were achieved most dramatically by naloxone at a dose of 5.76 mg/kg, which is equal to the most powerful dose in ameliorating cognitive injuries and neuron apoptosis after second SE. Conclusions:, Naloxone treatment immediately after early life SE could dose-dependently reduce cytokine production, glial activation, and further lower the vulnerability of immature brains to a second hit in adulthood. [source]


Expression and localization of P2 nucleotide receptor subtypes during development of the lateral ventricular choroid plexus of the rat

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 11 2007
P. A. Johansson
Abstract The choroid plexuses secrete cerebrospinal fluid (CSF) and regulate the brain's internal environment via the blood,CSF barrier. The permeability properties of the blood,CSF interface have been studied previously in adult and immature brains, however, little is known about the development of CSF secretion and its modulation. ATP influences secretion in other epithelia via ionotropic P2X or metabotropic P2Y receptors. P2 receptors have frequently been found to be down-regulated in the postnatal period, suggesting a developmental role for purinergic and pyrimidine signalling. The present study investigated the expression of P2 receptors in lateral ventricular choroid plexus in relation to recent studies of aquaporin-1 expression and rapid expansion of the lateral ventricles in rat embryos. In the present study mRNAs for all known mammalian nucleotide receptor subtypes, except P2X7, were identified from as early as E15. P2X7 mRNA was detected from E18. Indications of differential expression patterns were observed for the different subtypes during development: an apparent increase in expression for P2Y2 and P2X7, a decline in P2X1-2,4, no detectable difference in expression levels for P2X6 and P2Y12-13 and transient expression peaks for P2X3,5 and P2Y1,4,6,14. P2X4,5,7 and P2Y1,4 receptor proteins were detected immunohistochemically in the choroidal epithelium from early in development (E15 or E18). Their differing developmental profiles suggest specific roles in the development of CSF secretion that may have particular relevance for the rapid expansion of the ventricles that occurs in the embryo. P2X5 and P2Y6 were also detected in the developing neuropendyma from P0 and P9, respectively. [source]


Reduced expression of MAb6B4 epitopes on chondroitin sulfate proteoglycan aggrecan in perineuronal nets from cerebral cortices of SAMP10 mice: A model for age-dependent neurodegeneration

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 6 2008
Yuko Saitoh
Abstract The accelerated senescence-prone SAMP10 mouse strain is a model for age-dependent neurodegeneration and is characterized by brain atrophy and deficits in learning and memory. Because perineuronal nets play an important role in the synaptic plasticity of adult brains, we examined the distributions of molecules that constitute perineuronal nets in SAMP10 mouse brain samples and compared them with those in control SAMR1 mouse samples. Proteoglycan-related monoclonal antibody 6B4 (MAb6B4) clearly immunostained perineuronal nets in SAMR1 mice cortices, but the corresponding immunostaining in SAMP10 mice was very faint. MAb6B4 recognizes phosphacan/PTP, in immature brains. However, this antibody recognized several protein bands, including a 400-kDa core glycoprotein from chondroitin sulfate proteoglycan in homogenates of mature cortices from SAMR1 mice. The 400-kDa band was also recognized by antiaggrecan antibodies. The aggrecan core glycoprotein band was also detectable in samples from SAMP10 mice, but this glycoprotein was faintly immunostained by MAb6B4. Because MAb6B4 recognized the same set of protein bands that the monoclonal antibody Cat-315 recognized in mature cerebral cortices of SAMR1 mice, the MAb6B4 epitope appears to be closely related to that of Cat-315 and presumably represents a novel type of oligosaccharide that attaches to aggrecans. The Cat-315 epitope colocalized with aggrecan in perineuronal nets from SAMR1 mouse brain samples, whereas its expression was prominently reduced in SAMP10 mouse brain samples. The biological significance of the MAb6B4/Cat-315 epitope in brain function and its relationship to the neurodegeneration and learning disabilities observed in SAMP10 mice remain to be elucidated. © 2007 Wiley-Liss, Inc. [source]