Analyte Concentrations (analyte + concentration)

Distribution by Scientific Domains

Selected Abstracts

Integration of a Chemical-Responsive Hydrogel into a Porous Silicon Photonic Sensor for Visual Colorimetric Readout

Lisa M. Bonanno
Abstract The incorporation of a chemo-responsive hydrogel into a 1D photonic porous silicon (PSi) transducer is demonstrated. A versatile hydrogel backbone is designed via the synthesis of an amine-functionalized polyacrylamide copolymer where further amine-specific biochemical reactions can enable control of cross-links between copolymer chains based on complementary target,probe systems. As an initial demonstration, the incorporation of disulfide chemistry to control cross-linking of this hydrogel system within a PSi Bragg mirror sensor is reported. Direct optical monitoring of a characteristic peak in the white light reflectivity spectrum of the incorporated PSi Bragg mirror facilitates real-time detection of the hydrogel dissolution in response to the target analyte (reducing agent) over a timescale of minutes. The hybrid sensor response characteristics are shown to systematically depend on hydrogel cross-linking density and applied target analyte concentration. Additionally, effects due to responsive hydrogel confinement in a porous template are shown to depend on pore size and architecture of the PSi transducer substrate. Sufficient copolymer and water is removed from the PSi transducer upon dissolution and drying of the hydrogel to induce color changes that can be detected by the unaided eye. This highlights the potential for future development for point-of-care diagnostic biosensing. [source]

Improved calculation of the net analyte signal in inverse multivariate calibration

Joan Ferré
Abstract The net analyte signal (NAS) is the part of the measured signal that a calibration model relates to the property of interest (e.g. analyte concentration). Accurate values of the NAS are required in multivariate calibration to calculate analytical figures of merit such as sensitivity, selectivity, signal-to-noise ratio and limit of detection. This paper presents an improved version of the calculation method for the NAS in inverse models proposed by Lorber et al. (Anal. Chem. 1997; 69: 1620). Model coefficients and predictions calculated with the improved NAS are the same as those from the common equations of principal component regression (PCR) and partial least squares (PLS) regression. The necessary alterations to the calculations of sensitivity, selectivity and the pseudounivariate presentation of the model are also provided. Copyright © 2001 John Wiley & Sons, Ltd. [source]

Determination of ,-caprolactam migration from polyamide plastics: a new approach

Z. Pogorzelska
Abstract A new gas chromatography method for determination of ,-caprolactam (CPR) migration from packaging materials such as: polyamide (PA) films, PA granulates, PA/PE (polyethylene) laminates, PA casings, etc., to food simulants has been developed. Water, 3% w/v acetic acid, 15% and 95% v/v ethanol and olive oil have been used as a food simulants. Using the 1,4-butanediol (BUG) as an internal standard (instead of aza-2-cyclononanone), calibration curves were constructed. Very good separation of CPR from BUG was achieved by using a Nukol fused silica capillary column (Supelco), 25 m,×,0.32,mm. The time of analysis is shorter than 12 min: 7.69,min for BUG and 11.60,min for CPR. The regression line equation for CPR migration to water is: y,=,0.080x,+,0.14; to olive oil: y,=,0.010x. The sensitivity of the developed method is appropriate for the quantitative determination of CPR in an analyte concentration of approximately 0.2,mg/kg, when the specific migration limit (SML) for this compound, according to Directive 90/128/EEC, is 15,mg/kg food simulant. Copyright © 2001 John Wiley & Sons, Ltd. [source]

Fluorescent gel particles in the nanometer range for detection of metabolites in living cells,

Kristoffer Almdal
Abstract In this present work a research program that aims at the development of sensor particles based on ratiometric detection of fluorescence from two dyes was embarked on. Such particles can in principle be used to achieve spatially and time resolved measurements of metabolite concentrations in living cells. The dyes are chosen such that the fluorescence of one dye is a function of an analyte concentration whereas the fluorescence of the other dye is independent of variations in the medium. Methods have been investigated for synthesizing such particles based on crosslinked polyacrylamide in inverse micelles in oil microemulsions. Typical sizes of the particles are tens of nanometers. Characterization methods for such particles based on size exclusion chromatography, photon correlation spectroscopy, scanning electron microscopy, and atomic force microscopy have been developed. The stability of the sensor particles and their potential as an analytical tool will be discussed. Copyright © 2006 John Wiley & Sons, Ltd. [source]

Systematic investigation of ion suppression and enhancement effects of fourteen stable-isotope-labeled internal standards by their native analogues using atmospheric-pressure chemical ionization and electrospray ionization and the relevance for multi-analyte liquid chromatographic/mass spectrometric procedures

Daniela Remane
In clinical and forensic toxicology, multi-analyte procedures are very useful to quantify drugs and poisons of different classes in one run. For liquid chromatographic/tandem mass spectrometric (LC/MS/MS) multi-analyte procedures, often only a limited number of stable-isotope-labeled internal standards (SIL-ISs) are available. If an SIL-IS is used for quantification of other analytes, it must be excluded that the co-eluting native analyte influences its ionization. Therefore, the effect of ion suppression and enhancement of fourteen SIL-ISs caused by their native analogues has been studied. It could be shown that the native analyte concentration influenced the extent of ion suppression and enhancement effects leading to more suppression with increasing analyte concentration especially when electrospray ionization (ESI) was used. Using atmospheric-pressure chemical ionization (APCI), methanolic solution showed mainly enhancement effects, whereas no ion suppression and enhancement effect, with one exception, occurred when plasma extracts were used under these conditions. Such differences were not observed using ESI. With ESI, eleven SIL-ISs showed relevant suppression effects, but only one analyte showed suppression effects when APCI was used. The presented study showed that ion suppression and enhancement tests using matrix-based samples of different sources are essential for the selection of ISs, particularly if used for several analytes to avoid incorrect quantification. In conclusion, only SIL-ISs should be selected for which no suppression and enhancement effects can be observed. If not enough ISs are free of ionization interferences, a different ionization technique should be considered. Copyright © 2010 John Wiley & Sons, Ltd. [source]

Using multivariate statistical methods to model the electrospray ionization response of GXG tripeptides based on multiple physicochemical parameters

M. A. Raji
Response factors were determined for twelve GXG peptides (where G stands for glycine and X is any of alanine [A], arginine [R], asparagine [N], aspartic acid [D], glycine [G], histidine [H], leucine [L], lysine [K], phenylalanine [F], serine [S], tyrosine [Y], valine [V]) by electrospray ionization mass spectrometry (ESI-MS). The response factors were measured using a novel flow injection method. This new method is based on the Gaussian distribution of analyte concentration resulting from band-broadening dispersion experienced by the analyte upon passage through an extended volume of PEEK tubing. This method removes the need for preparing a discrete series of standard solutions to assess concentration-dependent response. Relative response factors were calculated for each peptide with reference to GGG. The observed trends in the relative response factors were correlated with several analyte physicochemical parameters, chosen based on current understanding of ion release from charged droplets during the ESI process. These include analyte properties: nonpolar surface area; polar surface area; gas-phase basicity; proton affinity; and Log D. Multivariate statistical analysis using multiple linear regression, decision tree, and support vector regression models were investigated to assess their potential for predicting ESI response based on the analyte properties. The support vector regression model was more versatile and produced the least predictive error following 12-fold cross-validation. The effect of variation in solution pH on the relative response factors is highlighted, as evidenced by the different predictive models obtained for peptide response at two pH values (pH,=,6.0 and 9.0). The relationship between physicochemical parameters and associated ionization efficiencies for GXG tripeptides is discussed based on the equilibrium partitioning model. Copyright © 2009 John Wiley & Sons, Ltd. [source]

Mass spectrometry for the detection of differentially expressed proteins: a comparison of surface-enhanced laser desorption/ionization and capillary electrophoresis/mass spectrometry

Nils v. Neuhoff
The discovery of biomarkers is currently attracting much interest as it harbors great potential for the diagnosis and monitoring of human diseases. Here we have used two advanced mass spectroscopy based technologies, surface enhanced laser desorption ionization (SELDI-MS) and capillary electrophoresis/mass spectrometry (CE/MS), to obtain proteomic patterns of urine samples from patients suffering from membranous glomerulonephritis (MGN) and healthy volunteers. The results indicate that CE/MS analysis is able to display a rich and complex pattern of polypeptides with high resolution and high mass accuracy. In order to analyze these patterns, the MosaiqueVisu software was developed for peak identification, deconvolution and the display of refined maps in a three-dimensional format. The polypeptide profiles obtained with SELDI-MS from the same samples are much sparser and show lower resolution and mass accuracy. The SELDI-MS profiles are further heavily dependent on analyte concentration. SELDI-MS analysis identified three differentially expressed polypeptides, which are potential biomarkers that can distinguish healthy donors from patients with MGN. In contrast, approximately 200 potential biomarkers could be identified by CE/MS. Thus, while SELDI-MS is easy to use and requires very little sample, CE/MS generates much richer data sets that enable an in-depth analysis. Copyright © 2003 John Wiley & Sons, Ltd. [source]

Simultaneous Quantification of Heavy Metals Using a Solid State Potentiometric Sensor Array

Jesús Gismera
Abstract A potentiometric sensor array of four nonspecific electrodes with solid-state membranes is developed and tested for simultaneous analysis of copper(II), mercury(II), and silver(I) ions. The cross-sensitivity responses of the sensors for these ions are evaluated. The array potentiometric signals are processed by partial least-squares regression (PLS) and back propagation artificial neural networks (ANN) to determinate analyte concentrations. The ANN configuration is optimized and two different training algorithms of the ANN are also evaluated. Best results are obtained when the potentiometric sensors are activated and the data are processed using ANN and the gradient descent adaptive algorithm. The system is used to quantify these heavy metals in synthetic samples and in dental amalgams with successful results. [source]

A combined artificial neural network/residual bilinearization approach for obtaining the second-order advantage from three-way non-linear data

Alejandro C. Olivieri
Abstract Three-way instrumental data offer the second-order advantage to analysts, a property of great utility in the field of complex sample analysis in the presence of unsuspected components as potential interferents. The available multivariate methodologies for obtaining this advantage are all based on linear models, and hence they are not applicable to spectral information behaving in a non-linear manner with respect to target analyte concentrations. This work describes the combination of a back-propagation artificial neural network model with a technique known as residual bilinearization, applicable to second-order spectral information. The joint model allows one to efficiently extract analyte concentrations from intrinsically non-linear data, even in the presence of unsuspected constituents. Simulations have been performed by mimicking deviations from linearity brought about by: (1) exponential relationship between fluorescence and concentration, (2) kinetic evolution of responsive reaction products and (3) analytes acting as reaction catalysts. In all of these cases, successful prediction of the analyte concentrations was achieved on large test sample sets, which included the presence of overlapping components not included in the training step. The new method not only obtains the second-order advantage, but also correctly retrieves the contribution of the unsuspected components to the total test sample signals. The comparison with a multivariate methodology based on partial least-squares regression with second-order advantage shows that the presently described method displays better predictive ability. Copyright © 2006 John Wiley & Sons, Ltd. [source]

Liquid chromatography coupled to nuclear magnetic resonance spectroscopy for the identification of isoflavone glucoside malonates in T. pratense L. leaves.

Eva de Rijke
Abstract Previous studies revealed that the main isoflavones in extracts of leaves of T. pratense L. are biochanin A and formononetin, their 7- O -glucosides, and two glucoside malonate isomers of each of them. Since LC,MS(/MS) did not provide sufficient information to distinguish the glucoside malonate isomers, in the present paper LC,NMR as well as off-line two-dimensional NMR were used to obtain further structural information. Matrix solid-phase dispersion (MSPD) was applied to obtain sufficiently high analyte concentrations to perform LC,NMR. Stop-flow reversed-phase LC,NMR was performed using a gradient of deuterated water and deuterated acetonitrile. Off-line COSY and NOESY experiments were carried out to determine the positions of the glucose moiety on the flavonoid aglycone, and of the malonate moiety on the glucose. Based on the fragmentation patterns in MS/MS and the NMR spectra, the two formononetin glucoside malonate isomers were identified as 7- O -,-D-glucoside 6´´- O -malonate and 7- O -,-D-glucoside 4´´- O -malonate; i.e. they only differ in the substitution position of the malonate group on the glucoside ring. The biochanin A glucoside malonate isomers, however, have quite different structures. The main and later eluting isomer is biochanin A 7- O -,-D-glucoside 6´´- O -malonate, and the minor and earlier eluting isomer is 5-hydroxy-7-methoxyisoflavone 4´- O -,-D-glucoside 4´´- O -malonate: the positions of the methoxy group and the glucoside 6´´- O -malonate group on the flavonoid skeleton are interchanged. [source]

In-line near infrared monitoring of esterification of a molten ethylene,vinyl alcohol copolymer in a twin screw extruder

Claire Barrčs
Near infrared spectroscopy has developed in the polymer industry as a tool for in-line monitoring of processes, particularly extrusion. However, little work is dedicated to the monitoring of chemical reactions involving polymer melts. In this paper, we examine the suitability of NIR spectroscopy for monitoring the chemical modification (catalyzed esterification) of a molten ethylene,vinyl alcohol copolymer by octanoic acid in a twin screw extruder. Extrusion samples are characterized off-line, for calibration purposes, for the three species of interest (i.e. unreacted acid, OH groups, and ester functions formed on the polymer backbone) by means of two techniques: 1H NMR, allowing all three species to be quantified, and residual (free) acid titration. However, the mass balance of free acid is not straightforward, due to loss of mass by volatilization at the vent. Therefore, 1H NMR analysis and acid titration have to be combined to allow for determination of all concentrations. Multivariate calibration is implemented here to quantify and subsequently predict the analyte concentrations by using the NIR spectroscopic data. Our calibration, based on a partial least squares regression software, provides satisfactory results in terms of correlation between actual and predicted concentrations. This work demonstrates the potential of in-line NIR spectroscopy for monitoring chemical reactions with polymer melts in extrusion. POLYM. ENG. SCI. 46:1613,1624, 2006. © 2006 Society of Plastics Engineers [source]

Lack of correlation between elevated maternal serum hCG during second-trimester biochemical screening and fetal congenital anomaly

Claudio Celentano
Abstract Objective Isolated elevations in midtrimester maternal serum human chorionic gonadotrophin concentrations (MShCG) have been reported to be associated with a substantially increased likelihood of fetal congenital malformations. The reported malformations included a wide range of organ systems, originating at different embryologic developmental stages. The purpose of our study was to determine the significance of an isolated elevated MShCG (>2.5 MoM) in midtrimester for the detection of fetal structural anomalies in a large population. Methods Among 10 144 women who underwent a biochemical triple screen at 15 to 18 weeks' gestation, 463 patients, who had an elevated MShCG, but normal ,-fetoprotein (AFP) and unconjugated estriol (uE3) levels, were identified. Patients with an integrated calculated Down syndrome risk above 1:250 were excluded. Only nonsmokers, at ages <35 years, without a history of prior fetal anomalies were included. The control group consisted of 463 patients with normal serum analyte concentrations and Down syndrome risks below 1:250, who were matched for maternal age and date of biochemical screen. All patients underwent a detailed genetic sonogram in which an anatomic survey and multiple ,soft markers' for aneuploidy were looked for. Newborns were examined by a senior pediatrician trained in dysmorphology. Results MShCG levels were 3.18 ± 0.72 versus 0.99 ± 0.43 MoM (p < 0.0001) in study and control groups respectively. Sonography revealed 8 versus 6 cases of major congenital anomalies among the 463 patients of their respective groups, and 39 versus 36 sonographic ,soft markers' for aneuploidy. Fetal karyotyping and neonatal examination for dysmorphology revealed 6 chromosomal anomalies (4 Down syndrome; 2 Turner syndrome) among the 8 major malformations in the study group, but none in the controls (p < 0.0001). Three of the 39 fetuses with ,soft markers' and elevated MShCG were found to have trisomy 21. Conclusion Isolated elevation of MShCG does not confer an increased risk of fetal congenital anomalies other than chromosomal abnormalities. However, elevated MShCG levels in combination with sonographic ,soft markers' for aneuploidy were associated with a high incidence of chromosomal anomalies, despite a normal biochemical triple screen risk estimate. Copyright © 2005 John Wiley & Sons, Ltd. [source]

Development of a validated liquid chromatography/tandem mass spectrometry method for the distinction of thyronine and thyronamine constitutional isomers and for the identification of new deiodinase substrates

Susanne Piehl
Thyronines (THs) and thyronamines (TAMs) are two groups of endogenous iodine-containing signaling molecules whose representatives differ from each other only regarding the number and/or the position of the iodine atoms. Both groups of compounds are substrates of three deiodinase isozymes, which catalyze the sequential reductive removal of iodine from the respective precursor molecule. In this study, a novel analytical method applying liquid chromatography/tandem mass spectrometry (LC-MS/MS) was developed. This method permitted the unequivocal, simultaneous identification and quantification of all THs and TAMs in the same biological sample. Furthermore, a liquid-liquid extraction procedure permitting the concurrent isolation of all THs and TAMs from biological matrices, namely deiodinase (Dio) reaction mixtures, was established. Method validation experiments with extracted TH and TAM analytes demonstrated that the method was selective, devoid of matrix effects, sensitive, linear over a wide range of analyte concentrations and robust in terms of reproducible recoveries, process efficiencies as well as intra-assay and inter-assay stability parameters. The method was applied to study the deiodination reactions of iodinated THs catalyzed by the three deiodinase isozymes. With the HPLC protocol developed herein, sufficient chromatographic separation of all constitutional TH and TAM isomers was achieved. Accordingly, the position of each iodine atom removed from a TH substrate in a Dio-catalyzed reaction was backtracked unequivocally. While several established deiodination reactions were verified, two as yet unknown reactions, namely the phenolic ring deiodination of 3,,5,-diiodothyronine (3,,5,-T2) by Dio2 and the tyrosyl ring deiodination of 3-monoiodothyronine (3-T1) by Dio3, were newly identified. Copyright © 2008 John Wiley & Sons, Ltd. [source]

Sensitive determination of acidic drugs and triclosan in surface and wastewater by ion-pair reverse-phase liquid chromatography/tandem mass spectrometry

José Benito Quintana
A new method is presented for the determination of 12 acidic pharmaceuticals (non-steroidal anti-inflammatory drugs and bezafibrate), including two metabolites from aqueous samples, together with triclosan as a personal care product. Ion-pair liquid chromatography (IP-LC) with electrospray ionisation tandem mass spectrometry (ESI-MS) in the negative ion mode was employed. The ion-pairing agent (tri- n -butylamine) increased the signal intensity for all acidic analytes and detection limits of 6,200,ng/L were obtained by multiple reaction monitoring. This allows analysis of wastewater samples by direct injection into the LC/MS system without the need for a preceding enrichment step. When combined with a solid-phase extraction (SPE) step, limits of quantification between 0.15 and 11,ng/L were obtained from 100-mL sample volumes, which is adequate for most applications. The occurrence of matrix effects was studied and standard addition was required for reliable quantification after SPE from wastewater. The method was finally applied to surface and wastewaters, with analyte concentrations ranging from below the detection limit up to 5.5,,g/L. Copyright © 2004 John Wiley & Sons, Ltd. [source]

Matrix-assisted laser desorption/ionization directed nano-electrospray ionization tandem mass spectrometric analysis for protein identification

Juergen Kast
In those cases where the information obtained by peptide mass fingerprinting or matrix-assisted laser desorption/ionization tandem mass spectrometry (MALDI-MS/MS) is not sufficient for unambiguous protein identification, nano-electrospray ionization (nano-ESI) and/or electrospray ionization tandem mass spectrometry (ESI-MS/MS) analysis must be performed. The sensitivity of nano-ESI/MS, however, is lower than that of MALDI-MS, especially at very low analyte concentrations and/or in the presence of contaminants, such as salt and detergents. Moreover, to perform ESI-MS/MS, the peptide masses of the precursor ions must be known. The approach described in this paper, MALDI-directed nano-ESI-MS/MS, makes use of information obtained from the more sensitive MALDI-MS experiments in order to direct subsequent nano-ESI-MS/MS experiments. Peptide molecular ions found in the MALDI-MS analysis are then selected, as their (+2) precursor ions, for nano-ESI-MS/MS sequencing, even though these ions cannot be detected in the ESI-MS spectra. This method, originally proposed by Tempst et al. (Anal. Chem. 2000, 72: 777,790), has been extended to provide better sensitivity and shorter analysis times; also, a comparison with liquid chromatography/tandem mass spectrometry (LC/MS/MS) has been performed. These experiments, performed using quadrupole time-of-flight instruments equipped with commercially available nano-ESI sources, have allowed the unambiguous identification of in-gel digested proteins at levels below their ESI-MS detection limits, even in the presence of salts and detergents. Copyright © 2003 John Wiley & Sons, Ltd. [source]

Microfluidic chip-capillary electrophoresis for two orders extension of adjustable upper working range for profiling of inorganic and organic anions in urine

Wen Peng Guo
Abstract To meet the need for onsite monitoring of urine anions, a microfluidic chip-capillary electrophoresis device was designed, fabricated and tested to extend the upper CE working range for an enhancement up to 500 fold (100 fold for sample dilution and 5 folds for CE injection) in order to analyze highly variable anionic metabolites in urine samples. Capillaries were embedded between two PMMA plates with laser-fabricated microchannel patterns to produce the microfluidic chip-capillary electrophoresis to perform standard/sample dilution and CE injection with adjustable dilution ratios. A circular ferrofluid valve was incorporated on-chip to perform cleanup and conditioning, mixing and dilution, injection and CE separation. Under optimized conditions, a complete assay for four samples can be achieved within an hour for 15 anions commonly found in urines. Satisfactory working ranges (0.005,500,mM) and low detection limits (0.5,6.5,,M based on S/N =2) are obtained with satisfactory repeatability (RSD, n=5) 0.52,0.87% and 4.1,6.5% for migration time and peak area, respectively. The working ranges with two orders adjustable upper extension are adequate to cover all analytes concentrations commonly found in human urine samples. The device fabricated shows sufficiently large experimentally verifiable enhancement factor to meet the application requirements. Its reliability was established by more than 94% recoveries of spiked standards and agreeable results from parallel method comparison with conventional ion chromatography method. The extension of the upper CE working range enables flexible onsite dilution on demand, a quick turn-around of results, and a low-cost device suitable for bedside monitoring of patients under critical conditions for metabolic disorders. [source]