Analysis Probe (analysis + probe)

Distribution by Scientific Domains


Selected Abstracts


Rapid detection and identification of counterfeit of adulterated products of synthetic phosphodiesterase type-5 inhibitors with an atmospheric solids analysis probe

DRUG TESTING AND ANALYSIS, Issue 2 2010
Marian Twohig
Abstract The market success of the three approved synthetic phosphodiesterase type-5 (PDE-5) inhibitors for the treatment of erectile dysfunction has led to an explosion in counterfeit versions of these drugs. In parallel a large market has developed for herbal products claimed to be natural alternatives to these synthetic drugs. The herbal products are heavily advertised on the internet and are freely available to purchase without prescription. Furthermore, adulteration of these supposed natural medicines is a very common and serious phenomenon. Recent reports have shown that the adulteration has extended to the analogues of the three approved synthetic PDE-5 inhibitors. An Atmospheric Solids Analysis Probe (ASAP) was used for the direct analysis of the counterfeit pharmaceuticals and herbal products. Using the ASAP combined with time-of-flight mass spectrometry (TOF MS) it was possible to detect fraudulent counterfeit tablets. The physical appearance of the pills resembled the pills from the original manufacturer but contained the wrong active pharmaceutical ingredient (API). Detecting adulteration for five herbal supplements marketed as natural alternatives to PDE-5 inhibitors was also possible using the ASAP. Three types of adulteration were found in the five samples: adulteration with tadalafil or sildenafil, mixed adulteration (tadalafil and sildenafil), and adulteration with analogues of these drugs. Copyright © 2010 John Wiley & Sons, Ltd. [source]


Atmospheric solids analysis probe: a rapid ionization technique for small molecule drugs

JOURNAL OF MASS SPECTROMETRY (INCORP BIOLOGICAL MASS SPECTROMETRY), Issue 11 2008
Chris Petucci
[source]


Masking selected sequence variation by incorporating mismatches into melting analysis probes,

HUMAN MUTATION, Issue 3 2006
Rebecca L. Margraf
Abstract Hybridization probe melting analysis can be complicated by the presence of sequence variation (benign polymorphisms or other mutations) near the targeted mutation. We investigated the use of "masking" probes to differentiate alleles with similar probe melting temperatures. Selected sequence variation was masked by incorporating mismatches (deletion, unmatched nucleotide, or universal base) into hybridization probes at the polymorphic location. Such masking probes create a probe/target mismatch with all possible alleles at the selected polymorphic location. Any allele with additional variation at another site is identified by a lower probe melting temperature than alleles that vary only at the masked position. This "masking technique" was applied to RET protooncogene and HPA6 mutation detection using unlabeled hybridization probes, a saturating dsDNA dye, and high-resolution melting analysis. Masking probes clearly distinguished all targeted mutations from polymorphisms when at least 1 base pair (bp) separated the mutation from the masked variation. We were able to mask polymorphisms immediately adjacent to mutations, except in certain cases, such as those involving single-base deletion probes when both adjacent positions had the same polymorphic nucleotides. The masking probes can also localize mutations to specific codons or nucleotide positions. Masking probes can simplify melting analysis of complex regions and eliminate the need for sequencing. Hum Mutat 27(3), 269,278, 2006. © 2006 Wiley-Liss, Inc. [source]