Home About us Contact | |||
Analog Complex (analog + complex)
Selected AbstractsEnergetics of galactose, and glucose,aromatic amino acid interactions: Implications for binding in galactose-specific proteinsPROTEIN SCIENCE, Issue 9 2004Mannargudi S. Sujatha Abstract An aromatic amino acid is present in the binding site of a number of sugar binding proteins. The interaction of the saccharide with the aromatic residue is determined by their relative position as well as orientation. The position-orientation of the saccharide relative to the aromatic residue was found to vary in different sugar-binding proteins. In the present study, interaction energies of the complexes of galactose (Gal) and of glucose (Glc) with aromatic residue analogs have been calculated by ab initio density functional (U-B3LYP/ 6-31G**) theory. The position-orientations of the saccharide with respect to the aromatic residue observed in various Gal-, Glc-, and mannose,protein complexes were chosen for the interaction energy calculations. The results of these calculations show that galactose can interact with the aromatic residue with similar interaction energies in a number of position-orientations. The interaction energy of Gal,aromatic residue analog complex in position-orientations observed for the bound saccharide in Glc/Man,protein complexes is comparable to the Glc,aromatic residue analog complex in the same position-orientation. In contrast, there is a large variation in interaction energies of complexes of Glc- and of Gal- with the aromatic residue analog in position-orientations observed in Gal,protein complexes. Furthermore, the conformation wherein the O6 atom is away from the aromatic residue is preferred for the exocyclic ,CH2OH group in Gal,aromatic residue analog complexes. The implications of these results for saccharide binding in Gal-specific proteins and the possible role of the aromatic amino acid to ensure proper positioning and orientation of galactose in the binding site have been discussed. [source] Induced fit in guanidino kinases,comparison of substrate-free and transition state analog structures of arginine kinasePROTEIN SCIENCE, Issue 1 2003Mohammad S. Yousef Abstract Arginine kinase (AK) is a member of the guanidino kinase family that plays an important role in buffering ATP concentration in cells with high and fluctuating energy demands. The AK specifically catalyzes the reversible phosphoryl transfer between ATP and arginine. We have determined the crystal structure of AK from the horseshoe crab (Limulus polyphemus) in its open (substrate-free) form. The final model has been refined at 2.35 Å with a final R of 22.3% (Rfree = 23.7%). The structure of the open form is compared to the previously determined structure of the transition state analog complex in the closed form. Classically, the protein would be considered two domain, but dynamic domain (DynDom) analysis shows that most of the differences between the two structures can be considered as the motion between four rigid groups of nonsequential residues. ATP binds near a cluster of positively charged residues of a fixed dynamic domain. The other three dynamic domains close the active site with separate hinge rotations relative to the fixed domain. Several residues of key importance for the induced motion are conserved within the phosphagen kinase family, including creatine kinase. Substantial conformational changes are induced in different parts of the enzyme as intimate interactions are formed with both substrates. Thus, although induced fit occurs in a number of phosphoryl transfer enzymes, the conformational changes in phosphagen kinases appear to be more complicated than in prior examples. [source] Structural asymmetry and intersubunit communication in muscle creatine kinaseACTA CRYSTALLOGRAPHICA SECTION D, Issue 3 2007Jeffrey F. Ohren The structure of a transition-state analog complex of a highly soluble mutant (R134K) of rabbit muscle creatine kinase (rmCK) has been determined to 1.65,Å resolution in order to elucidate the structural changes that are required to support and regulate catalysis. Significant structural asymmetry is seen within the functional homodimer of rmCK, with one monomer found in a closed conformation with the active site occupied by the transition-state analog components creatine, MgADP and nitrate. The other monomer has the two loops that control access to the active site in an open conformation and only MgADP is bound. The N-terminal region of each monomer makes a substantial contribution to the dimer interface; however, the conformation of this region is dramatically different in each subunit. Based on this structural evidence, two mutational modifications of rmCK were conducted in order to better understand the role of the amino-terminus in controlling creatine kinase activity. The deletion of the first 15 residues of rmCK and a single point mutant (P20G) both disrupt subunit cohesion, causing the dissociation of the functional homodimer into monomers with reduced catalytic activity. This study provides support for a structural role for the amino-terminus in subunit association and a mechanistic role in active-site communication and catalytic regulation. [source] Energetics of galactose, and glucose,aromatic amino acid interactions: Implications for binding in galactose-specific proteinsPROTEIN SCIENCE, Issue 9 2004Mannargudi S. Sujatha Abstract An aromatic amino acid is present in the binding site of a number of sugar binding proteins. The interaction of the saccharide with the aromatic residue is determined by their relative position as well as orientation. The position-orientation of the saccharide relative to the aromatic residue was found to vary in different sugar-binding proteins. In the present study, interaction energies of the complexes of galactose (Gal) and of glucose (Glc) with aromatic residue analogs have been calculated by ab initio density functional (U-B3LYP/ 6-31G**) theory. The position-orientations of the saccharide with respect to the aromatic residue observed in various Gal-, Glc-, and mannose,protein complexes were chosen for the interaction energy calculations. The results of these calculations show that galactose can interact with the aromatic residue with similar interaction energies in a number of position-orientations. The interaction energy of Gal,aromatic residue analog complex in position-orientations observed for the bound saccharide in Glc/Man,protein complexes is comparable to the Glc,aromatic residue analog complex in the same position-orientation. In contrast, there is a large variation in interaction energies of complexes of Glc- and of Gal- with the aromatic residue analog in position-orientations observed in Gal,protein complexes. Furthermore, the conformation wherein the O6 atom is away from the aromatic residue is preferred for the exocyclic ,CH2OH group in Gal,aromatic residue analog complexes. The implications of these results for saccharide binding in Gal-specific proteins and the possible role of the aromatic amino acid to ensure proper positioning and orientation of galactose in the binding site have been discussed. [source] |