Anaerobic

Distribution by Scientific Domains
Distribution within Life Sciences

Terms modified by Anaerobic

  • anaerobic bacteria
  • anaerobic benzene degradation
  • anaerobic biodegradation
  • anaerobic bioreactor
  • anaerobic condition
  • anaerobic culture
  • anaerobic dechlorination
  • anaerobic degradation
  • anaerobic digestion
  • anaerobic digestion process
  • anaerobic fermentation
  • anaerobic fungus
  • anaerobic glycolysis
  • anaerobic growth
  • anaerobic incubation
  • anaerobic metabolism
  • anaerobic microbial community
  • anaerobic microorganism
  • anaerobic organism
  • anaerobic oxidation
  • anaerobic pathogen
  • anaerobic respiration
  • anaerobic sludge
  • anaerobic stress
  • anaerobic threshold

  • Selected Abstracts


    IN VITRO COMPARISON OF ANAEROBIC AND AEROBIC GROWTH RESPONSE OF SALMONELLA TYPHIMURIUM TO ZINC ADDITION

    JOURNAL OF FOOD SAFETY, Issue 4 2002
    S.Y. PARK
    ABSTRACT Zinc supplemented diets have been used to provide zinc as a nutrient and higher concentrations have been used to induce molt in laying hens. It is not known if the zinc in these diets would inhibit Salmonella spp growth. This study examines the effects of zinc compounds on the growth of S. typhimurium poultry isolate under aerobic and anaerobic conditions. The aerobic growth response of S. typhimurium was determined either in tryptic soy broth (TSB) or minimal (M9) broth containing five different concentrations (0.67, 2.01, 3.35, 4.69, and 6.03% [wt/vol]) of either Zn acetate [Zn(C2H2O2)22H2O] or Zn sulfate [ZnSO47H2O] while anaerobic growth response was determined in M9 broth with or without reductants (L-cysteine hydrochloride [C3H7NO2SHCl], and sodium sulfide [Na2S 9H2O]). Aerobic growth rates inhibited (P < 0.05) by Zn acetate than by Zn sulfate in TSB medium. The Zn source and concentration decreased (P < 0.05) aerobic growth response of S. typhimurium poultry isolate in M9 medium. The growth rates of S. typhimurium under anaerobic growth conditions were less responsive to Zn salts but were generally lower (P < 0.05) in the presence of reductant than in the absence of reductants at each concentration of Zn compound. The results in this study provide evidence that Zn may inhibit S. typhimurium under in vitro aerobic or anaerobic atmospheric conditions and S. typhimurium grows less optimally under anaerobic growth conditions. [source]


    Characterization of bacterial pectinolytic strains involved in the water retting process

    ENVIRONMENTAL MICROBIOLOGY, Issue 9 2003
    Elena Tamburini
    Summary Pectinolytic microorganisms involved in the water retting process were characterized. Cultivable mesophilic anaerobic and aerobic bacteria were isolated from unretted and water-retted material. A total of 104 anaerobic and 23 aerobic pectinolytic strains were identified. Polygalacturonase activity was measured in the supernatant of cell cultures; 24 anaerobic and nine aerobic isolates showed an enzymatic activity higher than the reference strains Clostridium felsineum and Bacillus subtilis respectively. We performed the first genotypic characterization of the retting microflora by a 16S amplified ribosomal DNA restriction analysis (ARDRA). Anaerobic isolates were divided into five different groups, and the aerobic isolates were clustered into three groups. 84.6% of the anaerobic and 82.6% of the aerobic isolates consisted of two main haplotypes. Partial 16S rRNA gene sequences were determined for 12 strains, representative of each haplotype. All anaerobic strains were assigned to the Clostridium genus, whereas the aerobic isolates were assigned to either the Bacillus or the Paenibacillus genus. Anaerobic isolates with high polygalacturonase (PG) activity belong to two clearly distinct phylogenetic clusters related to C. acetobutylicum,C. felsineum and C. saccharobutylicum species. Aerobic isolates with high PG activity belong to two clearly distinct phylogenetic clusters related to B. subtilisT and B. pumilusT. [source]


    Toxic Effects of Chromium(VI) on Anaerobic and Aerobic Growth of Shewanella oneidensis MR-1

    BIOTECHNOLOGY PROGRESS, Issue 1 2004
    Sridhar Viamajala
    Cr(VI) was added to early- and mid-log-phase Shewanella oneidensis ( S. oneidensis) MR-1 cultures to study the physiological state-dependent toxicity of Cr(VI). Cr(VI) reduction and culture growth were measured during and after Cr(VI) reduction. Inhibition of growth was observed when Cr(VI) was added to cultures of MR-1 growing aerobically or anaerobically with fumarate as the terminal electron acceptor. Under anaerobic conditions, there was immediate cessation of growth upon addition of Cr(VI) in early- and mid-log-phase cultures. However, once Cr(VI) was reduced below detection limits (0.002 mM), the cultures resumed growth with normal cell yield values observed. In contrast to anaerobic MR-1 cultures, addition of Cr(VI) to aerobically growing cultures resulted in a gradual decrease of the growth rate. In addition, under aerobic conditions, lower cell yields were also observed with Cr(VI)-treated cultures when compared to cultures that were not exposed to Cr(VI). Differences in response to Cr(VI) between aerobically and anaerobically growing cultures indicate that Cr(VI) toxicity in MR-1 is dependent on the physiological growth condition of the culture. Cr(VI) reduction has been previously studied in Shewanellaspp., and it has been proposed that Shewanella spp.may be used in Cr(VI) bioremediation systems. Studies of Shewanella spp. provide valuable information on the microbial physiology of dissimilatory metal reducing bacteria; however, our study indicates that S. oneidensis MR-1 is highly susceptible to growth inhibition by Cr(VI) toxicity, even at low concentrations [0.015 mM Cr(VI)]. [source]


    ChemInform Abstract: Homogeneous, Anaerobic (N-Heterocyclic Carbene),Pd or ,Ni Catalyzed Oxidation of Secondary Alcohols at Mild Temperatures.

    CHEMINFORM, Issue 4 2010
    Christophe Berini
    Abstract ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 100 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a "Full Text" option. The original article is trackable via the "References" option. [source]


    Pro- and pre-biotics administration in preterm infants: colonization and influence on faecal flora

    ACTA PAEDIATRICA, Issue 2003
    A Marini
    Prolonged administration of probiotic in preterm babies induce a rise of specific IgA and IgM antibodies against probiotic. This fact explains why presence of living germs in stools almost disappeared in spite of continuous administration. However some positive influences were observed: decreased ratio of aerobic/anaerobic. Increased ratio of gram +/gram , germs. Prebiotic administration induces after 28 days a significant increase of faecal bifidobacteria and frequency and consistency of stools were more similar to those observed in subjects fed with human milk. [source]


    Tissue Integration of Polyacrylamide Hydrogel: An Experimental Study of Periurethral, Perivesical, and Mammary Gland Tissue in the Pig

    DERMATOLOGIC SURGERY, Issue 2008
    DMSC, LISE H. CHRISTENSEN MD
    BACKGROUND Polyacrylamide hydrogel (PAAG) is a nondegradable water-based polymer with high viscoelasticity. The gel is used as a tissue filler, the only risk being prolonged infection with anaerobic, contaminating microorganisms if not treated early with broad-spectrum antibiotics. OBJECTIVE With silicone gel as reference, PAAG tissue integration and migration was studied in a longitudinal study of the pig. MATERIALS AND METHODS Forty-one pigs were used. PAAG and silicone gel were injected into mammary tissue, and PAAG was injected into urethral or bladder wall or the anal canal. Tissues and regional lymph nodes were examined at 1, 1 1/2, 3, 3 1/2, 6, 12, and 14 months, and other lymph nodes and organs were examined at 1, 6, 12, and 14 months. RESULTS PAAG was invaded by macrophages and giant cells that were gradually replaced by a network of fibrous tissue. Silicone gel was seen inside these cells or as large vacuoles, surrounded by a fibrous capsule. Regional lymph nodes contained PAAG only at 1 1/2 months and silicone gel at 12 months. CONCLUSION PAAG is a stable, viscoelastic bulking agent, which unlike silicone gel is slowly integrated within its host tissue via a thin fibrous network. Long-term risk of fibrosis and migration is minimal. [source]


    Hydrogenase- and outer membrane c -type cytochrome-facilitated reduction of technetium(VII) by Shewanella oneidensis MR-1

    ENVIRONMENTAL MICROBIOLOGY, Issue 1 2008
    Matthew J. Marshall
    Summary Pertechnetate, 99Tc(VII)O4,, is a highly mobile radionuclide contaminant at US Department of Energy sites that can be enzymatically reduced by a range of anaerobic and facultatively anaerobic microorganisms, including Shewanella oneidensis MR-1, to poorly soluble Tc(IV)O2(s). In other microorganisms, Tc(VII)O4, reduction is generally considered to be catalysed by hydrogenase. Here, we provide evidence that although the NiFe hydrogenase of MR-1 was involved in the H2 -driven reduction of Tc(VII)O4,[presumably through a direct coupling of H2 oxidation and Tc(VII) reduction], the deletion of both hydrogenase genes did not completely eliminate the ability of MR-1 to reduce Tc(VII). With lactate as the electron donor, mutants lacking the outer membrane c -type cytochromes MtrC and OmcA or the proteins required for the maturation of c -type cytochromes were defective in reducing Tc(VII) to nanoparticulate TcO2·nH2O(s) relative to MR-1 or a NiFe hydrogenase mutant. In addition, reduced MtrC and OmcA were oxidized by Tc(VII)O4,, confirming the capacity for direct electron transfer from these OMCs to TcO4,. c -Type cytochrome-catalysed Tc(VII) reduction could be a potentially important mechanism in environments where organic electron donor concentrations are sufficient to allow this reaction to dominate. [source]


    Characterization of bacterial pectinolytic strains involved in the water retting process

    ENVIRONMENTAL MICROBIOLOGY, Issue 9 2003
    Elena Tamburini
    Summary Pectinolytic microorganisms involved in the water retting process were characterized. Cultivable mesophilic anaerobic and aerobic bacteria were isolated from unretted and water-retted material. A total of 104 anaerobic and 23 aerobic pectinolytic strains were identified. Polygalacturonase activity was measured in the supernatant of cell cultures; 24 anaerobic and nine aerobic isolates showed an enzymatic activity higher than the reference strains Clostridium felsineum and Bacillus subtilis respectively. We performed the first genotypic characterization of the retting microflora by a 16S amplified ribosomal DNA restriction analysis (ARDRA). Anaerobic isolates were divided into five different groups, and the aerobic isolates were clustered into three groups. 84.6% of the anaerobic and 82.6% of the aerobic isolates consisted of two main haplotypes. Partial 16S rRNA gene sequences were determined for 12 strains, representative of each haplotype. All anaerobic strains were assigned to the Clostridium genus, whereas the aerobic isolates were assigned to either the Bacillus or the Paenibacillus genus. Anaerobic isolates with high polygalacturonase (PG) activity belong to two clearly distinct phylogenetic clusters related to C. acetobutylicum,C. felsineum and C. saccharobutylicum species. Aerobic isolates with high PG activity belong to two clearly distinct phylogenetic clusters related to B. subtilisT and B. pumilusT. [source]


    Fate of estrogens and xenoestrogens in four sewage treatment plants with different technologies,

    ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 1 2008
    Guang-Guo Ying
    Abstract The fate and removal of the estrogens 17,-estradiol (E2), estrone (E1), and 17,-ethynylestradiol (EE2) and of the xenoestrogens bisphenol A (BPA), 4- tert -octylphenol (4- t -OP), 4-nonylphenol (4-NP), and nonylphenol mono- and diethoxylate (NPEO1 and NPEO2, respectively) were investigated in four South Australian sewage treatment plants (STPs; plants A,D) with different treatment technologies. The concentrations in the effluent from the two-year survey were similar to those reported in other studies. In the effluent, 4-NP, NPEO1, and NPEO2 had total concentrations up to 8 ,g/L, which were much higher than those of BPA and 4-t-OP. Estrone had the highest concentrations among the three estrogens, ranging between 13.3 and 39.3 ng/L, whereas the concentrations for E2 and EE2 varied between 1.0 and 4.2 ng/L and between 0.1 and 1.3 ng/L, respectively. The removal rates for the estrogens and xenoestrogens were variable but consistent with the plant performance parameters (biochemical oxygen demand, suspended solids, and ammonia). Considering all the estrogenic compounds analyzed in the present study, plant D, with a series of anaerobic and aerobic lagoons, was the least efficient of the four STPs in the removal of these compounds. The removal rates for 4-NP, NPEO1, and NPEO2 within the plants were 92% for plant A, with conventional activated sludge treatment; 80% for plant B, with two oxidation ditches; 70% for plant C, with three bioreactors; and 64% for plant D, with 10 lagoons in series. Comparatively, the removal of estrogens was lower, with rates ranging between 47 and 68% for E2 at the four plants. Both E1 and EE2 were more persistent during treatment, especially in plants C and D. [source]


    Role of glutathione in the formation of the active form of the oxygen sensor FNR ([4Fe-4S]·FNR) and in the control of FNR function

    FEBS JOURNAL, Issue 15 2000
    Quang Hon Tran
    The oxygen sensor regulator FNR (fumarate nitrate reductase regulator) of Escherichia coli is known to be inactivated by O2 as the result of conversion of a [4Fe-4S] cluster of the protein into a [2Fe-2S] cluster. Further incubation with O2 causes loss of the [2Fe-2S] cluster and production of apoFNR. The reactions involved in cluster assembly and reductive activation of apoFNR isolated under anaerobic or aerobic conditions were studied in vivo and in vitro. In a gshA mutant of E. coli that was completely devoid of glutathione, the O2 tension for the regulatory switch for FNR-dependent gene regulation was decreased by a factor of 4,5 compared with the wild-type, suggesting a role for glutathione in FNR function. In isolated apoFNR, glutathione could be used as the reducing agent for HS, formation required for [4Fe-4S] assembly by cysteine desulfurase (NifS), and for the reduction of cysteine ligands of the FeS cluster in FNR. Air-inactivated FNR (apoFNR without FeS) could be reconstituted to [4Fe-4S]·FNR by the same reaction as used for apoFNR isolated under anaerobic conditions. The in vivo effects of glutathione on FNR function and the role of glutathione in the formation of active [4Fe-4S]·FNR in vitro suggest an important role for glutathione in the de novo assembly of FNR and in the reductive activation of air-oxidized FNR under anaerobic conditions. [source]


    Bacterial community analysis of shallow groundwater undergoing sequential anaerobic and aerobic chloroethene biotransformation

    FEMS MICROBIOLOGY ECOLOGY, Issue 2 2007
    Todd R. Miller
    Abstract At Department of Energy Site 300, beneficial hydrocarbon cocontaminants and favorable subsurface conditions facilitate sequential reductive dechlorination of trichloroethene (TCE) and rapid oxidation of the resultant cis- dichloroethene (cis -DCE) upon periodic oxygen influx. We assessed the geochemistry and microbial community of groundwater from across the site. Removal of cis -DCE was shown to coincide with oxygen influx in hydrocarbon-containing groundwater near the source area. Principal component analysis of contaminants and inorganic compounds showed that monitoring wells could be differentiated based upon concentrations of TCE, cis -DCE, and nitrate. Structurally similar communities were detected in groundwater from wells containing cis -DCE, high TCE, and low nitrate levels. Bacteria identified by sequencing 16S rRNA genes belonged to seven phylogenetic groups, including Alpha -, Beta -, Gamma - and Deltaproteobacteria, Nitrospira, Firmicutes and Cytophaga,Flexibacter,Bacteroidetes (CFB). Whereas members of the Burkholderiales and CFB group were abundant in all wells (104,109 16S rRNA gene copies L,1), quantitative PCR showed that Alphaproteobacteria were elevated (>106 L,1) only in wells containing hydrocarbon cocontaminants. The study shows that bacterial community structure is related to groundwater geochemistry and that Alphaproteobacteria are enriched in locales where cis -DCE removal occurs. [source]


    Nitrate-dependent anaerobic carbon monoxide oxidation by aerobic CO-oxidizing bacteria

    FEMS MICROBIOLOGY ECOLOGY, Issue 1 2006
    G.M. King
    Abstract Two dissimilatory nitrate-reducing (Burkholderia xenovorans LB400 and Xanthobacter sp. str. COX) and two denitrifying isolates (Stappia aggregata IAM 12614 and Bradyrhizobium sp. str. CPP), previously characterized as aerobic CO oxidizers, consumed CO at ecologically relevant levels (<100 ppm) under anaerobic conditions in the presence, but not absence, of nitrate. None of the isolates were able to grow anaerobically with CO as a carbon or energy source, however, and nitrate-dependent anaerobic CO oxidation was inhibited by headspace concentrations >100,1000 ppm. Surface soils collected from temperate, subtropical and tropical forests also oxidized CO under anaerobic conditions with no lag. The observed activity was 25,60% less than aerobic CO oxidation rates, and did not appear to depend on nitrate. Chloroform inhibited anaerobic but not aerobic activity, which suggested that acetogenic bacteria may have played a significant role in forest soil anaerobic CO uptake. [source]


    Molecular characterization of microbial community in nitrate-removing activated sludge

    FEMS MICROBIOLOGY ECOLOGY, Issue 2 2002
    Han-Woong Lee
    Abstract The microbial community composition and dominant denitrifying populations in high-nitrate-removing (CR-I) and low-nitrate-removing (CR-II) activated sludge from continuous bioreactors were investigated with most probable number (MPN) enumeration, fluorescence in situ hybridization (FISH) and 16S rDNA characterization. MPNs of nitrate-reducing bacteria of sludge CR-I and sludge CR-II were 2.82×107 and 2.69×104 colony-forming units ml,1, respectively. Eight denitrifying bacteria and two nitrate-reducing bacteria were isolated from sludge CR-I, and four denitrifying bacteria and three nitrate-reducing bacteria from sludge CR-II. Small subunit rDNA characterization of the isolates showed that the majority belonged to the genus Pseudomonas. By using FISH up to 76% (CR-I) and 52% (CR-II) of total 4,6-diamidino-2-phenylindole cell counts hybridized to the bacterial probe EUB338. Members of ,-Proteobacteria were the most abundant proteobacterial group in both sludges, accounting for up to 41.6% and 37.1% of those detected by EUB338, respectively, whereas a higher number of Cytophaga,Flexibacter cluster members were observed in CR-I sludge compared to CR-II sludge. In contrast with culture-based results, the numbers of rRNA group I Pseudomonads accounted for less than 0.01% of those detected by EUB338 in both sludges. Ribosomal DNA clone library analysis showed that the ,-Proteobacteria were also dominant in both sludges. In CR-I sludge, they were related to Zooglorea ramigera, Alcaligenes defragrans, denitrifying Fe-oxidizing bacteria and Dechlorimonas sp., whereas in CR-II sludge, they were related to Nitrosomonas sp. and Dechlorimonas agitatus. When this reactor was operated under anaerobic and anoxic conditions, nitrifying bacteria could adapt to the anoxic environment. We inferred that anaerobic ammonium oxidation and nitrite oxidation may occur in low-nitrate-removing sludge CR-II and inhibit denitrification. [source]


    Isolation of a Carnobacterium maltaromaticum- like bacterium from systemically infected lake whitefish (Coregonus clupeaformis)

    FEMS MICROBIOLOGY LETTERS, Issue 1 2008
    Thomas P. Loch
    Abstract Herein we report on the first isolation of a Carnobacterium maltaromaticum -like bacterium from kidneys and swim bladders of lake whitefish (Coregonus clupeaformis) caught from Lakes Michigan and Huron, Michigan. Isolates were Gram-positive, nonmotile, facultatively anaerobic, asporogenous rods that did not produce catalase, cytochrome oxidase, or H2S, and did not grow on acetate agar. Except for carbohydrate fermentation, many phenotypic characteristics of lake whitefish isolates coincided with those of C. maltaromaticum, the causative agent of pseudokidney disease. Partial sequencing of 16S and 23S rRNA genes, as well as the piscicolin 126 precursor gene, yielded 97% and 98% nucleotide matches with C. maltaromaticum, respectively (accession numbers EU546836 and EU546837; EU643471). Phylogenetic analyses showed that lake whitefish isolates of this study are highly related, yet not fully identical to C. maltaromaticum. The presence of the C. maltaromaticum -like bacterium was associated with splenomegaly, renal and splenic congestion, and thickening of the swim bladder wall with accumulation of a mucoid exudate. Examination of stained tissue sections revealed renal and splenic congestion, vacuolation and bile stasis within the liver, and hyperplasia within the epithelial lining of the swim bladder. The concurrent presence of pathological changes and the C. maltaromaticum -like bacteria suggests that this bacterium is pathogenic to lake whitefish. [source]


    The adaptive response of anaerobically grown Saccharomyces cerevisiae to hydrogen peroxide is mediated by the Yap1 and Skn7 transcription factors

    FEMS YEAST RESEARCH, Issue 8 2008
    Anthony G. Beckhouse
    Abstract The molecular mechanisms involved in the ability of cells to adapt and respond to differing oxygen tensions are of great interest to the pharmaceutical, medical and fermentation industries. The transcriptional profiles reported in previous studies of cells grown under anaerobic, aerobic and dynamic growth conditions have shown significantly altered responses including induction of genes regulated by the oxidative stress transcription factor Yap1p when oxygen was present. The present study investigated the phenotypic changes that occur in cells when shifted from anaerobic to aerobic growth conditions and it was found through mutant analyses that the elevated activity of Yap1p during the shift was mediated by the phospholipid hydroperoxide-sensing protein encoded by GPX3. Cell viability and growth rate were unaffected even though anaerobically grown cells were found to be hypersensitive to low doses of the oxidative stress-inducing compound hydrogen peroxide (H2O2). Adaptation to H2O2 treatment was demonstrated to occur when anaerobically grown wild-type cells were aerated for a short time that was reliant on the Yap1p and Skn7p transcription factors. [source]


    Engineering NADH metabolism in Saccharomyces cerevisiae: formate as an electron donor for glycerol production by anaerobic, glucose-limited chemostat cultures

    FEMS YEAST RESEARCH, Issue 8 2006
    Jan-Maarten A. Geertman
    Abstract Anaerobic Saccharomyces cerevisiae cultures reoxidize the excess NADH formed in biosynthesis via glycerol production. This study investigates whether cometabolism of formate, a well-known NADH-generating substrate in aerobic cultures, can increase glycerol production in anaerobic S. cerevisiae cultures. In anaerobic, glucose-limited chemostat sultures (D=0.10 h,1) with molar formate-to-glucose ratios of 0 to 0.5, only a small fraction of the formate added to the cultures was consumed. To investigate whether incomplete formate consumption was by the unfavourable kinetics of yeast formate dehydrogenase (high kM for formate at low intracellular NAD+ concentrations) strains were constructed in which the FDH1 and/or GPD2 genes, encoding formate dehydrogenase and glycerol-3-phosphate dehydrogenase, respectively, were overexpressed. The engineered strains consumed up to 70% of the formate added to the feed, thereby increasing glycerol yields to 0.3 mol mol,1 glucose at a formate-to-glucose ratio of 0.34. In all strains tested, the molar ratio between formate consumption and additional glycerol production relative to a reference culture equalled one. While demonstrating that that format can be use to enhance glycerol yields in anaerobic S. cerevisiae cultures, This study also reveals kinetic constraints of yeast formate dehydrogenase as an NADH-generating system in yeast mediated reduction processes. [source]


    Effects of augmentation of coarse particulate organic matter on metabolism and nutrient retention in hyporheic sediments

    FRESHWATER BIOLOGY, Issue 10 2002
    C. L. Crenshaw
    SUMMARY 1.,Metabolic and biogeochemical processes in hyporheic zones may depend on inputs of coarse particulate organic matter. Our research focused on how differing quantity and quality of organic matter affects metabolism and nutrient retention in the hyporheic zone of a first-order Appalachian stream. 2.,Sixteen plots were established on a tributary of Hugh White Creek, NC, U.S.A. Sediment was extracted and treated with leaves, wood, plastic strips or remained unamended. Following treatment, sediment was returned to the stream and, approximately 3 months later, samples were removed from each plot. 3.,Aerobic and anaerobic metabolism were measured as the change in O2 and CO2 in recirculating microcosms. At the same time, we monitored other possible terminal electron accepting processes and changes in nutrient concentrations. Aerobic metabolism was low in all treatments and respiratory quotients calculated for all treatments indicated that metabolism was dominated by anaerobic processes. 4.,Rates of anaerobic respiration and total (combined aerobic and anaerobic) respiration were significantly greater (P < 0.05) in plots treated with leaf organic matter compared to controls. 5.,Addition of leaves, which had a low C:N ratio, stimulated respiration in hyporheic sediments. Anaerobic processes dominated metabolism in both control and amended sediments. Enhanced metabolic rates increased retention of many solutes, indicating that energy flow and nutrient dynamics in the subsurface of streams may depend upon the quantity and quality of imported carbon. [source]


    Microbiology and geochemistry of Little Hot Creek, a hot spring environment in the Long Valley Caldera

    GEOBIOLOGY, Issue 2 2010
    T. J. VICK
    A culture-independent community census was combined with chemical and thermodynamic analyses of three springs located within the Long Valley Caldera, Little Hot Creek (LHC) 1, 3, and 4. All three springs were approximately 80 °C, circumneutral, apparently anaerobic and had similar water chemistries. 16S rRNA gene libraries constructed from DNA isolated from spring sediment revealed moderately diverse but highly novel microbial communities. Over half of the phylotypes could not be grouped into known taxonomic classes. Bacterial libraries from LHC1 and LHC3 were predominantly species within the phyla Aquificae and Thermodesulfobacteria, while those from LHC4 were dominated by candidate phyla, including OP1 and OP9. Archaeal libraries from LHC3 contained large numbers of Archaeoglobales and Desulfurococcales, while LHC1 and LHC4 were dominated by Crenarchaeota unaffiliated with known orders. The heterogeneity in microbial populations could not easily be attributed to measurable differences in water chemistry, but may be determined by availability of trace amounts of oxygen to the spring sediments. Thermodynamic modeling predicted the most favorable reactions to be sulfur and nitrate respirations, yielding 40,70 kJ mol,1 e, transferred; however, levels of oxygen at or below our detection limit could result in aerobic respirations yielding up to 100 kJ mol,1 e, transferred. Important electron donors are predicted to be H2, H2S, S0, Fe2+ and CH4, all of which yield similar energies when coupled to a given electron acceptor. The results indicate that springs associated with the Long Valley Caldera contain microbial populations that show some similarities both to springs in Yellowstone and springs in the Great Basin. [source]


    Experimental silicification of the extremophilic Archaea Pyrococcus abyssi and Methanocaldococcus jannaschii: applications in the search for evidence of life in early Earth and extraterrestrial rocks

    GEOBIOLOGY, Issue 4 2009
    F. ORANGE
    Hydrothermal activity was common on the early Earth and associated micro-organisms would most likely have included thermophilic to hyperthermophilic species. 3.5,3.3 billion-year-old, hydrothermally influenced rocks contain silicified microbial mats and colonies that must have been bathed in warm to hot hydrothermal emanations. Could they represent thermophilic or hyperthermophilic micro-organisms and if so, how were they preserved? We present the results of an experiment to silicify anaerobic, hyperthermophilic micro-organisms from the Archaea Domain Pyrococcus abyssi and Methanocaldococcus jannaschii, that could have lived on the early Earth. The micro-organisms were placed in a silica-saturated medium for periods up to 1 year. Pyrococcus abyssi cells were fossilized but the M. jannaschii cells lysed naturally after the exponential growth phase, apart from a few cells and cell remains, and were not silicified although their extracellular polymeric substances were. In this first simulated fossilization of archaeal strains, our results suggest that differences between species have a strong influence on the potential for different micro-organisms to be preserved by fossilization and that those found in the fossil record represent probably only a part of the original diversity. Our results have important consequences for biosignatures in hydrothermal or hydrothermally influenced deposits on Earth, as well as on early Mars, as environmental conditions were similar on the young terrestrial planets and traces of early Martian life may have been similarly preserved as silicified microfossils. [source]


    Bronchopneumonia and oral health in hospitalized older patients.

    GERODONTOLOGY, Issue 2 2002
    A pilot study
    Abstract Aims: To correlate microbial findings obtained by bronchoalveolar lavage in pneumonia patients with the clinical situation of the oral cavity. Method: Quantitative aerobic and anaerobic cultures were carried out in 150 ml samples of bronchoalveolar lavage (BAL) obtained by means of an endoscope (Video Endoscope Pentax®) inserted per as in the infected bronchus. Material: Twenty consecutive patients with a tentative clinical diagnosis of bronchopneumonia in whom BAL was carried out for diagnostic purposes. A clinical evaluation of the oral health status (oral hygiene, caries, periodontal diseases) was subsequently carried out. Results: In seven edentulous subjects wearing complete dentures the culture of anaerobic microorganisms was negative or yielding less than 100 cfu/ml BAL. Two patients yielded high counts of S. aureus and one high counts of P. aeruginosa. In the 13 subjects with natural teeth left one showed high counts of Veillonella spp. (anaerobic)+P. aeruginosa, one high counts of Veillonella spp. +S. aureus, one high counts of P. aeruginosa + S. aureus and one high counts of E. coli. These four subjects showed poor oral hygiene, periodontal pockets and a BAL microflora consistent with periodontal pathology. Conclusion: The results of this pilot study suggest that microorganisms of denture plaque or associated with periodontal diseases may give rise to aspiration pneumonia in susceptible individuals. [source]


    The effects of fertilization with anaerobic, composted and pelletized sewage sludge on soil, tree growth, pasture production and biodiversity in a silvopastoral system under ash (Fraxinus excelsior L.)

    GRASS & FORAGE SCIENCE, Issue 2 2010
    A. A. Rigueiro-Rodríguez
    Abstract In silvopastoral systems, tree growth and the composition and productivity of pasture can be modified by management practices such as initial fertilization when tree seedlings are more sensitive to understorey competition. The aim of this study was to compare the effects of fertilization with different types of sewage sludge (anaerobic sludge, composted sludge and pelletized sludge), using different rates of incorporation and mineralization with traditional treatments (with and without mineral fertilizers) on the growth of newly established ash (Fraxinus excelsior L.) and on pasture development, to obtain sustainable management practices that enhance the growth of both components. Soil characteristics, tree growth, sward composition and pasture development were modified differently according to the type of sewage sludge used, and for similar total nitrogen inputs. Anaerobic sludge had a higher initial effect on both tree and pasture productivity. Pelletized sludge sustained better tree and pasture production. Composted sludge was found to be the most appropriate treatment for improving soil characteristics over the long term on sandy soils. It was concluded that pelletized sludge should be promoted because it enhances productivity, allows for better nutrient recovery and is less costly to store and apply compared with anaerobic sludge and composted sludge. No toxic concentrations of Zn or Cu were found in plants or in the soil despite higher concentrations being present in the applied sludge than in soil. [source]


    Faecal bacterial profile, nitrogen excretion and mineral absorption in healthy dogs fed supplemental oligofructose

    JOURNAL OF ANIMAL PHYSIOLOGY AND NUTRITION, Issue 9-10 2002
    A. C. Beynen
    Summary In a cross-over trial, five healthy dogs were fed a dry food without or with 1% (w/w) oligofructose to assess any oligofructose-induced effects on the faecal bacterial profile, nitrogen excretion and mineral absorption. The diets were given for a period of 3 weeks. Oligofructose feeding significantly raised the number of Bifidobacteria, Streptococci and Clostridia in faeces. The numbers of faecal anaerobic and aerobic bacteria were raised after ingestion of oligofructose. The faecal pH was unchanged. There was no effect of oligofructose feeding on the route of nitrogen excretion which was associated with a lack of effect on faecal ammonium and urinary urea excretion. It is suggested that the absence or presence of an effect of oligofructose on urinary and faecal nitrogen excretion depends on the background composition of the diet, in particular the content of non-digestible, fermentable carbohydrates. In the diets used, the content of non-digestible, fermentable carbohydrates was not measured. Both apparent magnesium and calcium absorption were significantly raised by oligofructose feeding, but phosphorus absorption was unaffected. The data presented may contribute to the qualification of the use of oligofructose in dog foods. [source]


    Characterization of Pantoea dispersa UQ68J: producer of a highly efficient sucrose isomerase for isomaltulose biosynthesis

    JOURNAL OF APPLIED MICROBIOLOGY, Issue 1 2004
    L. Wu
    Abstract Aims:, Isolation, identification and characterization of a highly efficient isomaltulose producer. Methods and Results:, After an enrichment procedure for bacteria likely to metabolize isomaltulose in sucrose-rich environments, 578 isolates were screened for efficient isomaltulose biosynthesis using an aniline/diphenylamine assay and capillary electrophoresis. An isolate designated UQ68J was exceptionally efficient in sucrose isomerase activity. Conversion of sucrose into isomaltulose by UQ68J (enzyme activity of 90,100 U mg,1 DW) was much faster than the current industrial strain Protaminobacter rubrum CBS574.77 (41,66 U mg,1 DW) or a reference strain of Erwinia rhapontici (0·3,0·9 U mg,1 DW). Maximum yield of isomaltulose at 78,80% of supplied sucrose was achieved in less than half the reaction time needed by CBS574.77, and the amount of contaminating trehalulose (4%) was the lowest recorded from an isomaltulose-producing microbe. UQ68J is a Gram negative, facultatively anaerobic, motile, noncapsulate, straight rod-shaped bacterium producing acid but no gas from glucose. Based on 16S rDNA analysis UQ68J is closest to Klebsiella oxytoca, but it differs from Klebsiella in defining characteristics and most closely resembles Pantoea dispersa in phenotype. Significance and Impact of Study:, This organism is likely to have substantial advantage over previously characterized sucrose isomerase producers for the industrial production of isomaltulose. [source]


    Examination of membrane protein expression in Paracoccus denitrificans by two-dimensional gel electrophoresis

    JOURNAL OF BASIC MICROBIOLOGY, Issue 1 2004
    Pavel Bouchal
    The well-known metabolic versatility of the soil bacterium Paracoccus denitrificans poses a challenge for modern proteomic approaches. We describe here improved preparation conditions that allow good separation and quantitative analyses of hundreds of membrane or periplasmic proteins. To illustrate this optimized procedure, the results of a screening for membrane proteins associated predominantly with aerobic or anaerobic (denitrifying) modes of growth are presented. [source]


    Effect of oxygen transfer rates on alcohols production by Candida guilliermondii cultivated on soybean hull hydrolysate

    JOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY, Issue 2 2009
    Ângela Cristina Schirmer-Michel
    Abstract BACKGROUND: In this research the use of soybean hull hydrolysate (SHH) as substrate for xylitol and ethanol production using an osmotolerant strain of Candida guilliermondii was studied. The production of alcohols was investigated in batch cultivations in which the variable parameter was the volumetric oxygen mass transfer coefficient (kLa) obtained from three different conditions of air supply: anaerobic (150 rpm, no aeration); microaerobic (300 rpm, 1 vvm), and aerobic (600 rpm, 2 vvm), corresponding to kLa values of 0; 8; and 46 h,1, respectively. RESULTS: SHH, although presenting a very high osmotic pressure (1413 mOsm kg,1), was completely metabolized under aerobic conditions with high biomass productivities of 0.49 g cells (L h),1, with little formation of ethanol. Xylitol was produced under microaeration, with product yield of 0.22 g g,1 xylose, with the formation of glycerol as a by-product. No xylose was metabolized under anaerobic conditions, but ethanol was produced from hexoses with high product yields of 0.5 g g,1. CONCLUSION: These results suggest that the hydrolysis of soybean hull and its conversion to ethanol and other alcohols could be an important use of this agro-industrial waste, which could be used for biofuel, xylitol or biomass production, depending on the aeration conditions of the cultures. Copyright © 2008 Society of Chemical Industry [source]


    Effect of changes of pH on the anaerobic/aerobic transformations of biological phosphorus removal in wastewater fed with a mixture of propionic and acetic acids

    JOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY, Issue 6 2006
    Yinguang Chen
    Abstract Most studies on the transformation of enhanced biological phosphorus removal have used acetic acid as the carbon source and focused on the anaerobic phase. In this paper the anaerobic and aerobic transformations of phosphorus removal microorganisms at various pH values were investigated with wastewater containing 3.14 mM C propionic acid and 1.56 mM C acetic acid. It was observed that the influence of acidic pH on the concentrations of mixed-liquor suspended solids and biomass was stronger than that of basic pH, and the maximal cell growth appeared at pH 7.6. The observed uptake rate of propionic acid was much faster than that of acetic acid at all pH values investigated, and both were affected by pH. The anaerobic transformations of polyhydroxyalkanoates and glycogen linearly decreased with increasing pH from 6.6 to 8.6, and a greater glycogen transformation correlated to greater polyhydroxyalkanoate transformation in both anaerobic and aerobic stages. Further studies revealed that at pH 6.6 and 8.6 the overall phosphorus release and uptake was low and there was no net phosphorus removal, although the initial phosphorus release was high. However, when the pH was controlled at pH 7.1 and 7.6, a phosphorus removal efficiency of 97.03% and 96.43% was achieved, respectively, which was greater than that of 87.46% at uncontrolled pH. Copyright © 2006 Society of Chemical Industry [source]


    Biodegradability of slaughterhouse wastewater with high blood content under anaerobic and aerobic conditions

    JOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY, Issue 4 2003
    Rodrigo del Pozo
    Abstract In this work, the biodegradability of wastewater from a slaughterhouse located in Ke,an, Turkey, was studied under aerobic and anaerobic conditions. A very high total COD content of 7230,mg,dm,3 was found, due to an inefficient blood recovery system. Low BOD5/COD ratio, high organic nitrogen and soluble COD contents, were in accordance with a high blood content. A respirometry test for COD fractionation showed a very low readily biodegradable fraction (SS) of 2%, a rapidly hydrolysable fraction (SH) of 51%, a slowly hydrolysable fraction (XS) of 33% and an inert fraction of 6%. Kinetic analysis revealed that hydrolysis rates were much slower than these of domestic sewage. The results underlined the need for an anaerobic stage prior to aerobic treatment. Tests with an anaerobic batch reactor indicated efficient COD degradation, up to around 80% removal. Further anaerobic degradation of the remaining COD was much slower and resulted in the build up of inert COD compounds generated as part of the metabolic activities in the anaerobic reactor. Accordingly, it is suggested that an appropriate combination of anaerobic and aerobic reactors would have to limit anaerobic degradation to around 80% of the tCOD and an effluent concentration above 1000,mg,dm,3, for the optimum operation of the following aerobic stage. © 2003 Society of Chemical Industry [source]


    Slow-tonic muscle fibers and their potential innervation in the turtle, Pseudemys (Trachemys) scripta elegans

    JOURNAL OF MORPHOLOGY, Issue 1 2005
    Robert J. Callister
    Abstract A description is provided of the ratio of slow-tonic vs. slow- and fast-twitch fibers for five muscles in the adult turtle, Pseudemys (Trachemys) scripta elegans. The cross-sectional area of each fiber type and an estimation of the relative (weighted) cross-sectional area occupied by the different fiber types are also provided. Two hindlimb muscles (flexor digitorum longus, FDL; external gastrocnemius, EG) were selected on the basis of their suitability for future motor-unit studies. Three neck muscles (the fourth head of testo-cervicis, TeC4; the fourth head of retrahens capitus collique, RCCQ4; transversalis cervicis, TrC) were chosen for their progressively decreasing oxidative capacity. Serial sections were stained for myosin adenosine triphosphatase (ATPase), NADH-diaphorase, and alpha-glycerophosphate dehydrogenase (,-GPDH). Conventional fiber-type classification was then performed using indirect markers for contraction speed and oxidative (aerobic) vs. glycolytic (anaerobic) metabolism: i.e., slow oxidative (SO, including slow-twitch and possibly slow-tonic fibers), fast-twitch, oxidative-glycolytic (FOG), and fast-twitch glycolytic (Fg) fibers. Slow-tonic fibers in the SO class were then revealed by directing the monoclonal antibody, ALD-58 (raised against the slow-tonic fiber myosin heavy chain of chicken anterior latissimus dorsi), to additional muscle cross sections. All five of the tested muscles contained the four fiber types, with the ATPase-stained fibers including both slow-tonic and slow-twitch fibers. The extreme distributions of SO fibers were in the predominately glycolytic TrC vs. the predominately oxidative TeC4 muscle (TrC,SO, 9%; FOG, 20%; Fg, 71% vs. TeC4,SO, 58%: FOG, 16%; Fg, 25%). Across the five muscles, the relative prevalence of slow-tonic fibers (4,47%) paralleled that of the SO fibers (9,58%). TeC4 had the highest prevalence of slow-tonic fibers (47%). The test muscles exhibited varying degrees of regional concentration of each fiber type, with the distribution of slow-tonic fibers paralleling that of the SO fibers. In the five test muscles, fiber cross-sectional area was usually ranked Fg > FOG > SO, and slow-twitch always > slow-tonic. In terms of weighted cross-sectional area, which provides a coarse-grain measure of each fiber type's potential contribution to whole muscle force, all five muscles exhibited a higher Fg and lower SO contribution to cross-sectional area than suggested by their corresponding fiber-type prevalence. This was also the case for the slow-twitch vs. slow-tonic fibers. We conclude that slow-tonic fibers are widespread in turtle muscle. The weighted cross-sectional area evidence suggested, however, that their contribution to force generation is minor except in highly oxidative muscles, with a special functional role, like TeC4. There is discussion of: 1) the relationship between the present results and previous work on homologous neck and hindlimb muscles in other nonmammalian species, and 2) the potential motoneuronal innervation of slow-tonic fibers in turtle hindlimb muscles. J. Morphol. © 2005 Wiley-Liss, Inc. [source]


    Photoreduction of iron protoporphyrin IX chloride in non-ionic triton X-100 micelle studied by electronic absorption and resonance Raman spectroscopy

    JOURNAL OF RAMAN SPECTROSCOPY, Issue 3 2001
    P. K. Shantha
    Resonance Raman and electronic absorption studies of iron protoporphyrin IX chloride (hemin) in non-ionic Triton X-100 micelle in the absence and presence of hindered imidazole (2-methylimidazole and 1,2-dimethylimidazole) and unhindered imidazole under various experimental conditions are reported. Hemin undergoes photoreduction at the metal center, both in the absence and presence of hindered imidazole, in anaerobic, alkaline and neutral pH conditions on photoexcitation by laser radiation at 441.6 and 457.9 nm. It is inferred from this study that only the monomer hemin encapsulated within the micelle under the alkaline pH conditions is photoreducible. The photoreduction of hemin in this micelle occurs from an electron transfer as a result of dissociation of coordinated hydroxyl ion to the iron atom in the photoexcited state, which may also involve the OH,Fe charge transfer transition around 360 nm. Copyright © 2001 John Wiley & Sons, Ltd. [source]


    Seasonal and diel changes of dissolved oxygen in a hypertrophic prairie lake

    LAKES & RESERVOIRS: RESEARCH AND MANAGEMENT, Issue 3 2005
    Richard D. Robarts
    Abstract Humboldt Lake, a hypertrophic prairie lake typical of many found on the Great Plains of North America, is usually ice-covered from early November to about mid-May. The lake is an important recreational fishery, now mainly stocked with walleye. It has a high potential risk of experiencing fish kills because of the very large cyanobacterial blooms that develop in it, the high rates of algal and bacterial production and the high concentrations of ammonia (NH3 -N) and dissolved organic matter. Following the collapse of cyanobacterial blooms, shallow prairie lakes are known to undergo periods of anoxia that can lead to summer fish kills. In some of the lakes, anoxia forms during the long period of ice cover, causing winter fish kills. Two years of seasonal and diel data (total phosphorus, dissolved oxygen (DO), NH3 -N and chlorophyll- a concentrations, and bacterial production) were analysed in this study to assess why significant fish kills did not occur during this period or during the , 30 years of records from Saskatchewan Environment. Humboldt Lake did not become anaerobic, either following the collapse of the cyanobacterial bloom or under ice cover, indicating that the oxygen (O2) influx (strong mixing) and production processes were greater than the microbial and chemical O2 demands, both over seasonal and diel time scales. Several published risk threshold criteria to predict the probability of summer and/or winter fish kills were applied in this study. The threshold criteria of maximum summer chlorophyll and maximum winter NH3 -N concentrations indicated that a summer fish kill was unlikely to occur in this hypertrophic prairie lake, provided its water quality remained similar to that during this study. Similarly, the threshold criteria of initial DO storage before ice cover and the rate of O2 depletion under ice cover also indicated a winter fish kill was unlikely. However, recent development in the watershed might have resulted in significant water quality deterioration and the winter fish kill that occurred in 2005. [source]