III Polyketide Synthase (iii + polyketide_synthase)

Distribution by Scientific Domains

Kinds of III Polyketide Synthase

  • type iii polyketide synthase

  • Selected Abstracts

    Expression, purification and crystallization of a plant type III polyketide synthase that produces diarylheptanoids

    Hiroyuki Morita
    Curcuminoid synthase (CUS) from Oryza sativa is a plant-specific type III polyketide synthase that catalyzes the one-pot formation of bisdemethoxycurcumin by the condensation of two molecules of 4-coumaroyl-CoA and one molecule of malonyl-CoA. Recombinant CUS was expressed in Escherichia coli and crystallized by the sitting-drop vapour-diffusion method. The crystals belonged to space group P21, with unit-cell parameters a = 72.7, b = 97.2, c = 126.2,, , = , = 90.0, , = 103.7. A diffraction data set was collected in-house to 2.5, resolution. [source]

    Novel type III polyketide synthases from Aloe arborescens

    FEBS JOURNAL, Issue 8 2009
    Yuusuke Mizuuchi
    Aloe arborescens is a medicinal plant rich in aromatic polyketides, such as pharmaceutically important aloenin (hexaketide), aloesin (heptaketide) and barbaloin (octaketide). Three novel type III polyketide synthases (PKS3, PKS4 and PKS5) were cloned and sequenced from the aloe plant by cDNA library screening. The enzymes share 85,96% amino acid sequence identity with the previously reported pentaketide chromone synthase and octaketide synthase. Recombinant PKS4 and PKS5 expressed in Escherichia coli were functionally identical to octaketide synthase, catalyzing the sequential condensations of eight molecules of malonyl-CoA to produce octaketides SEK4/SEK4b. As in the case of octaketide synthase, the enzymes are possibly involved in the biosynthesis of the octaketide barbaloin. On the other hand, PKS3 is a multifunctional enzyme that produces a heptaketide aloesone (i.e. the aglycone of aloesin) as a major product from seven molecules of malonyl-CoA. In addition, PKS3 also afforded a hexaketide pyrone (i.e. the precursor of aloenin), a heptaketide 6-(2-acetyl-3,5-dihydroxybenzyl)-4-hydroxy-2-pyrone, a novel heptaketide 6-(2-(2,4-dihydroxy-6-methylphenyl)-2-oxoethyl)-4-hydroxy-2-pyrone and octaketides SEK4/SEK4b. This is the first demonstration of the enzymatic formation of the precursors of the pharmaceutically important aloesin and aloenin by a wild-type PKS obtained from A. arborescens. Interestingly, the aloesone-forming activity was maximum at 50 C, and the novel heptaketide pyrone was non-enzymatically converted to aloesone. In PKS3, the active-site residue 207, which is crucial for controlling the polyketide chain length depending on the steric bulk of the side chain, is uniquely substituted with Ala. Site-directed mutagenesis demonstrated that the A207G mutant dominantly produced the octaketides SEK4/SEK4b, whereas the A207M mutant yielded a pentaketide 5,7-dihydroxy-2-methylchromone. [source]