IgG Molecules (igg + molecule)

Distribution by Scientific Domains


Selected Abstracts


Solid-phase biotinylation of antibodies,

JOURNAL OF MOLECULAR RECOGNITION, Issue 3 2004
Elizabeth Strachan
Abstract Biotinylation is an established method of labeling antibody molecules for several applications in life science research. Antibody functional groups such as amines, cis hydroxyls in carbohydrates or sulfhydryls may be modified with a variety of biotinylation reagents. Solution-based biotinylation is accomplished by incubating antibody in an appropriate buffered solution with biotinylation reagent. Unreacted biotinylation reagent must be removed via dialysis, diafiltration or desalting. Disadvantages of the solution-based approach include dilution and loss of antibody during post-reaction purification steps, and difficulty in biotinylation and recovery of small amounts of antibody. Solid-phase antibody biotinylation exploits the affinity of mammalian IgG-class antibodies for nickel IMAC (immobilized metal affinity chromatography) supports. In this method, antibody is immobilized on a nickel-chelated chromatography support and derivitized on-column. Excess reagents are easily washed away following reaction, and biotinylated IgG molecule is recovered under mild elution conditions. Successful solid phase labeling of antibodies through both amine and sulfhydryl groups is reported, in both column and mini-spin column formats. Human or goat IgG was bound to a Ni-IDA support. For sulfhydryl labeling, native disulfide bonds were reduced with TCEP, and reduced IgG was biotinylated with maleimide,PEO2 biotin. For amine labeling, immobilized human IgG was incubated with a solution of NHS,PEO4 biotin. Biotinylated IgG was eluted from the columns using a buffered 0.2,M imidazole solution and characterized by ELISA, HABA/avidin assay, probing with a streptavidin,alkaline phosphatase conjugate, and binding to a monomeric avidin column. The solid phase protocol for sulfhydryl labeling is significantly shorter than the corresponding solution phase method. Biotinylation in solid phase is convenient, efficient and easily applicable to small amounts of antibody (e.g. 100,,g). Antibody biotinylated on-column was found to be equivalent in stability and antigen-recognition ability to antibody biotinylated in solution. Solid-phase methods utilizing Ni-IDA resin have potential for labeling nucleic acids, histidine-rich proteins and recombinant proteins containing polyhistidine purification tags, and may also be applicable for other affinity systems and labels. Copyright © 2004 John Wiley & Sons, Ltd. [source]


Pooled Human Gammaglobulin Modulates Surface Molecule Expression and Induces Apoptosis in Human B Cells

AMERICAN JOURNAL OF TRANSPLANTATION, Issue 2 2003
Mieko Toyoda
We have previously shown that the pooled human gammaglobulin (IVIG) inhibited mixed lymphocyte reaction (MLR). In this study, we examined (1) if IVIG contains blocking antibodies reactive with cell surface molecules required for alloantigen recognition and (2) if IVIG modulates these surface molecule expressions using flow cytometry. IVIG does not contain significant amounts of blocking antibodies against CD3, CD4, CD8, CD20, CD14, CD40, MHC class I and class II. It reduces the number of intact B cells and monocytes, reduces or modulates CD19, CD20 and CD40 expression on B cells, and induces morphological changes in B cells. This B-cell modulation results primarily because of apoptosis. IVIG also induces apoptosis in T cells and monocytes, but to a lesser degree. Induction of apoptosis requires the intact IgG molecule. Reduction of intact B cell and monocyte cell numbers, modulation of surface molecule expression on B cells, and deletion of B and T cells by apoptosis could result in inhibition of optimal T-cell activation. This likely represents the primary mechanism responsible for IVIG suppression of the MLR, and may account for many of the observed beneficial effects of IVIG seen in the treatment of human autoimmune and alloimmune disorders. [source]


Should macroprolactin be measured in all hyperprolactinaemic sera?

CLINICAL ENDOCRINOLOGY, Issue 4 2009
T. Joseph McKenna
Summary Macroprolactin is a nonbioactive prolactin isoform usually composed of a monomer of prolactin and a IgG molecule which has a prolonged clearance rate similar to that of the immunoglobulins. Macroprolactinaemia, hyperprolactinaemia entirely accounted for by the presence of macroprolactin, is estimated to account for approximately 10% of all hyperprolactinaemia coming to clinical attention in the United Kingdom and the United States. Failure to recognize that macroprolactinaemia can explain hyperprolactinaemia, leads to unnecessary investigation, incorrect diagnosis and inappropriate treatment. Screening of hyperprolactinaemic sera for the presence of misleading concentrations of macroprolactin is readily performed in biochemistry laboratories although the procedures have not been automated. The most widely employed method is to treat the hyperprolactinaemic sera with polyethylene glycol which precipitates out high-molecular weight constituents including immunoglobulins. Re-assay of the sera for prolactin will then identify those sera which yield values within the relevant normal range indicative of macroprolactinaemia and not true hyperprolactinaemia. The case for the routine screening of all hyperprolactinaemic sera for macroprolactin is compelling. The consequences of failure to recognize macroprolactinaemia are significant, the problem is frequently encountered, the means of addressing it are immediately available and it is cost effective. [source]


Photoluminescence Detection of Biomolecules by Antibody-Functionalized Diatom Biosilica

ADVANCED FUNCTIONAL MATERIALS, Issue 6 2009
Debra K. Gale
Abstract Diatoms are single-celled algae that make microscale silica shells called "frustules", which possess intricate nanoscale features imbedded within periodic two-dimensional pore arrays. In this study, antibody-functionalized diatom biosilica frustules serve as a microscale biosensor platform for selective and label-free photoluminescence (PL)-based detection of immunocomplex formation. The model antibody rabbit immunoglobulin G (IgG) is covalently attached to the frustule biosilica of the disk-shaped, 10-µm diatom Cyclotella sp. by silanol amination and crosslinking steps to a surface site density of 3948,±,499 IgG molecules µm,2. Functionalization of the diatom biosilica with the nucleophilic IgG antibody amplifies the intrinsic blue PL of diatom biosilica by a factor of six. Furthermore, immunocomplex formation with the complimentary antigen anti-rabbit IgG further increases the peak PL intensity by at least a factor of three, whereas a non-complimentary antigen (goat anti-human IgG) does not. The nucleophilic immunocomplex increases the PL intensity by donating electrons to non-radiative defect sites on the photoluminescent diatom biosilica, thereby decreasing non-radiative electron decay and increasing radiative emission. This unique enhancement in PL emission is correlated to the antigen (goat anti-rabbit IgG) concentration, where immunocomplex binding follows a Langmuir isotherm with binding constant of 2.8,±,0.7,×,10,7M. [source]


Knockdown of Fc, receptor III in an arthritic temporomandibular joint reduces the nociceptive response in rats

ARTHRITIS & RHEUMATISM, Issue 10 2010
Phillip R. Kramer
Objective Fc, receptor III (Fc,RIII; CD16) is a receptor expressed on immune cells that selectively binds IgG molecules. IgG binding results in cellular activation and cytokine release. IgG is an important factor in arthritis and can be found in the arthritic temporomandibular joint (TMJ). We undertook this study to test the hypothesis that a reduction in Fc,RIII expression in TMJ tissues would reduce the nociceptive and inflammatory responses in an inflamed joint. Methods Small interfering RNA (siRNA), either naked or complexed with linear polyethyleneimine, was injected into the superior joint space of the TMJ in rats. After administration of siRNA the joint was injected with saline or with Freund's complete adjuvant to induce arthritis. Nociceptive responses were quantitated in the rat by measuring the animal's meal duration. Fc,RIII expression in the TMJ tissue was assayed by immunocytochemistry or Western blotting. Cleavage of Fc,RIII transcript was then assayed by 5, rapid amplification of complementary DNA ends. Interleukin-1, (IL-1,) and IgG content was measured in the TMJ tissue by enzyme-linked immunosorbent assay. Results Injection of Fc,RIII siRNA reduced the amount of Fc,RIII in the TMJ tissues, and the transcript was cleaved in a manner consistent with an RNA interference mechanism. Moreover, injection of Fc,RIII siRNA reduced the nociceptive response of rats with an arthritic TMJ and reduced the amount of the proinflammatory cytokine IL-1,. Conclusion Fc,RIII contributes to the pain resulting from inflammatory arthritis of the TMJ, and siRNA has the potential to be an effective treatment for this disorder. [source]


N-linked glycosylation is an important parameter for optimal selection of cell lines producing biopharmaceutical human IgG

BIOTECHNOLOGY PROGRESS, Issue 1 2009
Patrick H. C. van Berkel
Abstract We studied the variations in N-linked glycosylation of human IgG molecules derived from 105 different stable cell lines each expressing one of the six different antibodies. Antibody expression was based on glutamine synthetase selection technology in suspension growing CHO-K1SV cells. The glycans detected on the Fc fragment were mainly of the core-fucosylated complex type containing zero or one galactose and little to no sialic acid. The glycosylation was highly consistent for the same cell line when grown multiple times, indicating the robustness of the production and glycan analysis procedure. However, a twofold to threefold difference was observed in the level of galactosylation and/or non-core-fucosylation between the 105 different cell lines, suggesting clone-to-clone variation. These differences may change the Fc-mediated effector functions by such antibodies. Large variation was also observed in the oligomannose-5 glycan content, which, when present, may lead to undesired rapid clearance of the antibody in vivo. Statistically significant differences were noticed between the various glycan parameters for the six different antibodies, indicating that the variable domains and/or light chain isotype influence Fc glycosylation. The glycosylation altered when batch production in shaker was changed to fed-batch production in bioreactor, but was consistent again when the process was scaled from 400 to 5,000 L. Taken together, the observed clone-to-clone glycosylation variation but batch-to-batch consistency provides a rationale for selection of optimal production cell lines for large-scale manufacturing of biopharmaceutical human IgG. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009 [source]


Intravenous immunoglobulins , understanding properties and mechanisms

CLINICAL & EXPERIMENTAL IMMUNOLOGY, Issue 2009
A. Durandy
Summary High-dose intravenous immunoglobulin (IVIg) preparations are used currently for the treatment of autoimmune or inflammatory diseases. Despite numerous studies demonstrating efficacy, the precise mode of action of IVIg remains unclear. Paradoxically, IgG can exert both pro- and anti-inflammatory activities, depending on its concentration. The proinflammatory activity of low-dose IVIg requires complement activation or binding of the Fc fragment of IgG to IgG-specific receptors (Fc,R) on innate immune effector cells. In contrast, when administered in high concentrations, IVIg has anti-inflammatory properties. How this anti-inflammatory effect is mediated has not yet been elucidated fully, and several mutually non-exclusive mechanisms have been proposed. This paper represents the proceedings of a session entitled ,IVIg , Understanding properties and mechanisms' at the 6th International Immunoglobulin Symposium that was held in Interlaken on 26,28 March 2009. The presentations addressed how IgG may affect the cellular compartment, evidence for IVIg-mediated scavenging of complement fragments, the role of the dimeric fraction of IVIg, the anti-inflammatory properties of the minor fraction of sialylated IgG molecules, and the genetic organization and variation in Fc,Rs. These findings demonstrate the considerable progress that has been made in understanding the mechanisms of action of IVIgs, and may influence future perspectives in the field of Ig therapy. [source]