insulin/IGF-1 Signaling (igf-1 + signaling)

Distribution by Scientific Domains


Selected Abstracts


Alcohol-Induced Disruption of Endocrine Signaling

ALCOHOLISM, Issue 8 2007
Martin J. J. Ronis
This article contains the proceedings of a symposium at the 2006 ISBRA Meeting in Sydney Australia, organized and cochaired by Martin J. Ronis and Thomas M. Badger. The presentations were (1) Effect of Long-Term Ethanol Consumption on Liver Injury and Repair, by Jack R. Wands; (2) Alcohol-Induced Insulin Resistance in Liver: Potential Roles in Regulation of ADH Expression, Ethanol Clearance, and Alcoholic Liver Disease, by Thomas M. Badger; (3) Chronic Gestational Exposure to Ethanol Causes Brain Insulin and Insulin-Like Growth Factor Resistance, by Suzanne M de la Monte; (4) Disruption of IGF-1 Signaling in Muscle: A Mechanism Underlying Alcoholic Myopathy, by Charles H. Lang; (5) The Role of Reduced Plasma Estradiol and Impaired Estrogen Signaling in Alcohol-Induced Bone Loss, by Martin J. Ronis; and (6) Short-Term Influence of Alcohol on Appetite-Regulating Hormones in Man, by Jan Calissendorff. [source]


Thyroid hormone-mediated growth and differentiation of growth plate chondrocytes involves IGF-1 modulation of ,-catenin signaling

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 5 2010
Lai Wang
Abstract Thyroid hormone regulates terminal differentiation of growth plate chondrocytes in part through modulation of the Wnt/,-catenin signaling pathway. Insulin-like growth factor 1 (IGF-1) has been described as a stabilizer of ,-catenin, and thyroid hormone is a known stimulator of IGF-1 receptor expression. The purpose of this study was to test the hypothesis that IGF-1 signaling is involved in the interaction between the thyroid hormone and the Wnt/,-catenin signaling pathways in regulating growth plate chondrocyte proliferation and differentiation. The results show that IGF-1 and the IGF- receptor (IGF1R) stimulate Wnt-4 expression and ,-catenin activation in growth plate chondrocytes. The positive effects of IGF-1/IGF1R on chondrocyte proliferation and terminal differentiation are partially inhibited by the Wnt antagonists sFRP3 and Dkk1. T3 activates IGF-1/IGF1R signaling and IGF-1-dependent PI3K/Akt/GSK-3, signaling in growth plate chondrocytes undergoing proliferation and differentiation to prehypertrophy. T3 -mediated Wnt-4 expression, ,-catenin activation, cell proliferation, and terminal differentiation of growth plate chondrocytes are partially prevented by the IGF1R inhibitor picropodophyllin as well as by the PI3K/Akt signaling inhibitors LY294002 and Akti1/2. These data indicate that the interactions between thyroid hormone and ,-catenin signaling in regulating growth plate chondrocyte proliferation and terminal differentiation are modulated by IGF-1/IGF1R signaling through both the Wnt and PI3K/Akt signaling pathways. While chondrocyte proliferation may be triggered by the IGF-1/IGF1R-mediated PI3K/Akt/GSK3, pathway, cell hypertrophy is likely due to activation of Wnt/,-catenin signaling, which is at least in part initiated by IGF-1 signaling or the IGF-1-activated PI3K/Akt signaling pathway. © 2010 American Society for Bone and Mineral Research [source]


Short-Term Alcohol Administration Alters KiSS-1 Gene Expression in the Reproductive Hypothalamus of Prepubertal Female Rats

ALCOHOLISM, Issue 9 2009
Vinod K. Srivastava
Background:, Kisspeptins bind to the G-protein-coupled receptor (GPR54) to activate hypothalamic luteinizing hormone releasing hormone (LHRH) secretion at the time of puberty. Alcohol (ALC) causes depressed prepubertal LHRH release, resulting in depressed luteinizing hormone (LH) secretion and delayed puberty. Because KiSS-1 and GPR54 are important to the onset of puberty, we assessed the effects of chronic ALC administration on basal expression of these puberty-related genes within the reproductive hypothalamus, as well as hormones and transduction signaling pathways contributing to their activity. Methods:, Immature female rats were fed a liquid diet containing ALC for 6 days beginning when 27 days old. Controls received either companion isocaloric liquid diet or rat chow and water. Animals were decapitated on day 33, in the late juvenile stage of development. Blood was collected for the assessment of serum hormone levels. Brain tissues containing the anteroventral periventricular (AVPV) and arcuate (ARC) nuclei were obtained for assessing expression of specific puberty-related genes and proteins. Results:,KiSS-1 mRNA levels in the AVPV and ARC nuclei were suppressed (p < 0.001) in the ALC-treated rats. GPR54 gene and protein expressions were both modestly increased (p < 0.05) in AVPV nucleus, but not in ARC nucleus. Alcohol exposure also resulted in suppressed serum levels of insulin-like growth factor-1 (IGF-1), LH, and estradiol (E2). As IGF-1, in the presence of E2, can induce expression of the KiSS-1 gene, we assessed the potential for ALC to alter IGF-1 signaling in the reproductive hypothalamus. IGF-1 receptor gene and protein expressions were not altered. However, protein expression of phosphorylated Akt, a transduction signal used by IGF-1, was suppressed in the AVPV (p < 0.05) and ARC (p < 0.01) nuclei. Conclusions:, Alcohol causes suppressed KiSS-1 gene expression in the reproductive hypothalamus; hence, contributing to this drug's ability to cause suppressed LHRH secretion and disruption of the pubertal process. We suggest that this action, at least in part, is through altered IGF-1 signaling. [source]


Thyroid hormone-mediated growth and differentiation of growth plate chondrocytes involves IGF-1 modulation of ,-catenin signaling

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 5 2010
Lai Wang
Abstract Thyroid hormone regulates terminal differentiation of growth plate chondrocytes in part through modulation of the Wnt/,-catenin signaling pathway. Insulin-like growth factor 1 (IGF-1) has been described as a stabilizer of ,-catenin, and thyroid hormone is a known stimulator of IGF-1 receptor expression. The purpose of this study was to test the hypothesis that IGF-1 signaling is involved in the interaction between the thyroid hormone and the Wnt/,-catenin signaling pathways in regulating growth plate chondrocyte proliferation and differentiation. The results show that IGF-1 and the IGF- receptor (IGF1R) stimulate Wnt-4 expression and ,-catenin activation in growth plate chondrocytes. The positive effects of IGF-1/IGF1R on chondrocyte proliferation and terminal differentiation are partially inhibited by the Wnt antagonists sFRP3 and Dkk1. T3 activates IGF-1/IGF1R signaling and IGF-1-dependent PI3K/Akt/GSK-3, signaling in growth plate chondrocytes undergoing proliferation and differentiation to prehypertrophy. T3 -mediated Wnt-4 expression, ,-catenin activation, cell proliferation, and terminal differentiation of growth plate chondrocytes are partially prevented by the IGF1R inhibitor picropodophyllin as well as by the PI3K/Akt signaling inhibitors LY294002 and Akti1/2. These data indicate that the interactions between thyroid hormone and ,-catenin signaling in regulating growth plate chondrocyte proliferation and terminal differentiation are modulated by IGF-1/IGF1R signaling through both the Wnt and PI3K/Akt signaling pathways. While chondrocyte proliferation may be triggered by the IGF-1/IGF1R-mediated PI3K/Akt/GSK3, pathway, cell hypertrophy is likely due to activation of Wnt/,-catenin signaling, which is at least in part initiated by IGF-1 signaling or the IGF-1-activated PI3K/Akt signaling pathway. © 2010 American Society for Bone and Mineral Research [source]


Temporal requirements of insulin/IGF-1 signaling for proteotoxicity protection

AGING CELL, Issue 2 2010
Ehud Cohen
Summary Toxic protein aggregation (proteotoxicity) is a unifying feature in the development of late-onset human neurodegenerative disorders. Reduction of insulin/IGF-1 signaling (IIS), a prominent lifespan, developmental and reproductive regulatory pathway, protects worms from proteotoxicity associated with the aggregation of the Alzheimer's disease-linked A, peptide. We utilized transgenic nematodes that express human A, and found that late life IIS reduction efficiently protects from A, toxicity without affecting development, reproduction or lifespan. To alleviate proteotoxic stress in the animal, the IIS requires heat shock factor (HSF)-1 to modulate a protein disaggregase, while DAF-16 regulates a presumptive active aggregase, raising the question of how these opposing activities could be co-regulated. One possibility is that HSF-1 and DAF-16 have distinct temporal requirements for protection from proteotoxicity. Using a conditional RNAi approach, we found an early requirement for HSF-1 that is distinct from the adult functions of DAF-16 for protection from proteotoxicity. Our data also indicate that late life IIS reduction can protect from proteotoxicity when it can no longer promote longevity, strengthening the prospect that IIS reduction might be a promising strategy for the treatment of neurodegenerative disorders caused by proteotoxicity. [source]


Aging and cancer cell biology, 2009

AGING CELL, Issue 3 2009
Judith Campisi
Summary Cancer is an age-related disease in organisms with renewable tissues. A malignant tumor arises in part from genomic damage, which can also drive age-related degeneration. However, cancer differs from many age-related degenerative diseases in that it entails gain-of-function changes that confer new (albeit aberrant) properties on cells, resulting in vigorous cell proliferation and survival. Nonetheless, interventions that delay age-related degeneration , for example, caloric restriction or dampened insulin/IGF-1 signaling , often also delay cancer. How then is the development of cancer linked to aging? The answer to this question is complex, as suggested by recent findings. This Hot Topic review discusses some of these findings, including how genomic damage might alter cellular properties without conferring mutations, and how some genes that regulate lifespan in organisms that lack renewable tissues might affect the development of cancer in mammals. [source]


Caenorhabditis elegans proteomics comes of age

PROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 4 2010
Yhong-Hee Shim
Abstract Caenorhabditis elegans, a free-living soil nematode, is an ideal model system for studying various physiological problems relevant to human diseases. Despite its short history, C. elegans proteomics is receiving great attention in multiple research areas, including the genome annotation, major signaling pathways (e.g. TGF-, and insulin/IGF-1 signaling), verification of RNA interference-mediated gene targeting, aging, disease models, as well as peptidomic analysis of neuropeptides involved in behavior and locomotion. For example, a proteome-wide profiling of developmental and aging processes not only provides basic information necessary for constructing a molecular network, but also identifies important target proteins for chemical modulation. Although C. elegans has a simple body system and neural circuitry, it exhibits very complicated functions ranging from feeding to locomotion. Investigation of these functions through proteomic analysis of various C. elegans neuropeptides, some of which are not found in the predicted genome sequence, would open a new field of peptidomics. Given the importance of nematode infection in plants and mammalian pathogenesis pathways, proteomics could be applied to investigate the molecular mechanisms underlying plant, or animal,nematode pathogenesis and to identify novel antinematodal drugs. Thus, C. elegans proteomics, in combination of other molecular, biological and genetic techniques, would provide a versatile new tool box for the systematic analysis of gene functions throughout the entire life cycle of this nematode. [source]