Identical Mechanisms (identical + mechanism)

Distribution by Scientific Domains


Selected Abstracts


Mixture and single-substance toxicity of selective serotonin reuptake inhibitors toward algae and crustaceans

ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 1 2007
Anne Munch Christensen
Abstract Selective serotonin reuptake inhibitors (SSRIs) are used as antidepressant medications, primarily in the treatment of clinical depression. They are among the pharmaceuticals most often prescribed in the industrialized countries. Selective serotonin reuptake inhibitors are compounds with an identical mechanism of action in mammals (inhibit reuptake of serotonin), and they have been found in different aqueous as well as biological samples collected in the environment. In the present study, we tested the toxicities of five SSRIs (citalopram, fluoxetine, fluvoxamine, paroxetine, and sertraline) as single substances and of citalopram, fluoxetine, and sertraline in binary mixtures in two standardized bioassays. Test organisms were the freshwater algae Pseudokirchneriella subcapitata and the freshwater crustacean Daphnia magna. In algae, test median effect concentrations (EC50s) ranged from 0.027 to 1.6 mg/L, and in daphnids, test EC50s ranged from 0.92 to 20 mg/L, with sertraline being one of the most toxic compounds. The test design and statistical analysis of results from mixture tests were based on isobole analysis. It was demonstrated that the mixture toxicity of the SSRIs in the two bioassays is predictable by the model of concentration addition. Therefore, in risk assessment based on chemical analysis of environmental samples, it is important to include the effect of all SSRIs that are present at low concentrations, and the model of concentration addition may be used to predict the combined effect of the mixture of SSRIs. [source]


Formation of Lipid Emulsions and Clear Gels by Liquid Crystal Emulsification

INTERNATIONAL JOURNAL OF COSMETIC SCIENCE, Issue 1 2007
T. Suzuki
Recently developed emulsion technologies for the formation of fine emulsions, lipid emulsions and clear gels by liquid crystal emulsification were reviewed. As a basic information on liquid crystal emulsification, the structures and characteristic behaviours of lyotropic liquid crystals were summarized. Formation of a liquid crystalline phase was often seen in emulsions and biological systems. The significance of liquid crystal formation during emulsification was analysed by comparing the states and stabilities of emulsions prepared by different processes. Then uses of liquid crystals for formation of the characteristic emulsions and gels were also discussed. In liquid crystal emulsification, an oil phase is dispersed directly into the lamellar liquid-crystalline phase composed of surfactant, glycerol and water to prepare a gel-like oil-in-liquid crystal emulsion. This is followed by dilution with the remaining water to produce an emulsion. From the phase behaviour during emulsification and analysis of the local motion of the liquid crystal membrane by fluorometry, it was confirmed that the interaction between surfactant and a polyol molecule such as glycerol promotes hydrogen bonding and enhances the strength of the lamellar liquid crystal membranes, which results in the formation of oil-in-liquid crystal emulsions. The interaction between the liquid crystal and oil was analysed from the changes in molecular motion of the membrane at the oil-liquid crystal interface using the spin label technique of electron spin resonance (ESR). The fluidity of the liquid crystal membrane did not change when oil was added, and therefore oil-in-liquid crystal emulsions of various oils were prepared by the identical process. This lack of dependence of the liquid crystal membrane on oil results in the unique properties of liquid crystal emulsification, which can be used for oils of various polarity and different molecular constituents. When a self-organizing artificial stratum corneum lipid containing pseudo-ceramide was used as a principal component of the oil, a multilamellar emulsion of concentric lamellar structure was formed. The multilamellar emulsion supplements the physiological function of stratum corneum by the identical mechanism as natural intercellular lipids. High-pressure treatment of the lipid emulsion produced a gel-like emulsion crystal, in which the homogeneous nanoemulsion droplets were arranged in a hexagonal array. This review paper was presented at the Conference of the Asian Societies of Cosmetic Scientists 2005 in Bangkok. [source]


Structural and functional differences between the promoters of independently expressed killer cell Ig-like receptors

EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 7 2005
Bergen, Jeroen van
Abstract Killer Ig-like receptors (KIR) are important for the recognition and elimination of diseased cells by human NK cells. Myeloid leukemia patients given a hematopoietic stem cell transplantation, for example, benefit from KIR-mediated NK alloreactivity directed against the leukemia cells. To establish an effective NK cell repertoire, most KIR genes are expressed stochastically, independently of the others. However, the sequences upstream of the coding regions of these KIR genes are highly homologous to the recently identified KIR3DL1 promoter (91.1,99.6% sequence identity), suggesting that they are regulated by similar if not identical mechanisms of transcriptional activation. We investigated the effects of small sequence differences between the KIR3DL1 promoter and other KIR promoters on transcription factor binding and promoter activity. Surprisingly, electrophoretic mobility shift assays and promoter-reporter assays revealed significant structural and functional differences in the cis-acting elements of these highly homologous KIR promoters, suggesting a key role for transcription factors in independent control of expression of specific KIR loci. Thus, the KIR repertoire may be shaped by a combination of both gene-specific and stochastic mechanisms. [source]


Differential galanin receptor-1 and galanin expression by 5-HT neurons in dorsal raphé nucleus of rat and mouse: evidence for species-dependent modulation of serotonin transmission

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 3 2003
Jari A. Larm
Abstract Galanin and galanin receptors are widely expressed by neurons in rat brain that either synthesize/release and/or are responsive to, classical transmitters such as ,-aminobutyric acid, acetylcholine, noradrenaline, histamine, dopamine and serotonin (5-hydroxytryptamine, 5-HT). The dorsal raphé nucleus (DRN) contains , 50% of the 5-HT neurons in the rat brain and a high percentage of these cells coexpress galanin and are responsive to exogenous galanin in vitro. However, the precise identity of the galanin receptor(s) present on these 5-HT neurons has not been previously established. Thus, the current study used a polyclonal antibody for the galanin receptor-1 (GalR1) to examine the possible expression of this receptor within the DRN of the rat and for comparative purposes also in the mouse. In the rat, intense GalR1-immunoreactivity (IR) was detected in a substantial population of 5-HT-immunoreactive neurons in the DRN, with prominent receptor immunostaining associated with soma and proximal dendrites. GalR1-IR was also observed in many cells within the adjacent median raphé nucleus. In mouse DRN, neurons exhibited similar levels and distribution of 5-HT-IR to that in the rat, but GalR1-IR was undetectable. Consistent with this, galanin and GalR1 mRNA were also undetectable in mouse DRN by in situ hybridization histochemistry, despite the detection of GalR1 mRNA (and GalR1-IR) in adjacent cells in the periaqueductal grey and other midbrain areas. 5-HT neuron activity in the DRN is primarily regulated via 5-HT1A autoreceptors, via inhibition of adenylate cyclase and activation of inward-rectifying K+ channels. Notably, the GalR1 receptor subtype signals via identical mechanisms and our findings establish that galanin modulates 5-HT neuron activity in the DRN of the rat via GalR1 (auto)receptors. However, these studies also identify important species differences in the relationship between midbrain galanin and 5-HT systems, which should prompt further investigations in relation to comparative human neurochemistry and which have implications for studies of animal models of relevant neurological conditions such as stress, anxiety and depression. [source]


Is a short, sharp shock equivalent to long-term punishment?

PLANT CELL & ENVIRONMENT, Issue 4 2009
Contrasting the spatial pattern of acute, chronic ozone damage to soybean leaves via chlorophyll fluorescence imaging
ABSTRACT Experimental investigations of ozone (O3) effects on plants have commonly used short, acute [O3] exposure (>100 ppb, on the order of hours), while in field crops damage is more likely caused by chronic exposure (<100 ppb, on the order of weeks). How different are the O3 effects induced by these two fumigation regimes? The leaf-level photosynthetic response of soybean to acute [O3] (400 ppb, 6 h) and chronic [O3] (90 ppb, 8 h d,1, 28 d) was contrasted via simultaneous in vivo measurements of chlorophyll a fluorescence imaging (CFI) and gas exchange. Both exposure regimes lowered leaf photosynthetic CO2 uptake about 40% and photosystem II (PSII) efficiency (Fq,/Fm,) by 20% compared with controls, but this decrease was far more spatially heterogeneous in the acute treatment. Decline in Fq,/Fm, in the acute treatment resulted equally from decreases in the maximum efficiency of PSII (Fv,/Fm,) and the proportion of open PSII centres (Fq,/Fv,), but in the chronic treatment decline in Fq,/Fm, resulted only from decrease in Fq,/Fv,. Findings suggest that acute and chronic [O3] exposures do not induce identical mechanisms of O3 damage within the leaf, and using one fumigation method alone is not sufficient for understanding the full range of mechanisms of O3 damage to photosynthetic production in the field. [source]