Home About us Contact | |||
IX Collagen (ix + collagen)
Kinds of IX Collagen Selected AbstractsExpression of mutant cartilage oligomeric matrix protein in human chondrocytes induces the pseudoachondroplasia phenotypeJOURNAL OF ORTHOPAEDIC RESEARCH, Issue 4 2006Thomas M. Merritt Abstract Over 70 mutations in the cartilage oligomeric matrix protein (COMP), a large extracellular pentameric glycoprotein synthesized by chondrocytes, have been identified as causing two skeletal dysplasias: multiple epiphyseal dysplasia (MED/EDM1), and a dwarfing condition, pseudoachondroplasia (PSACH). These mutations induce misfolding of intracellular COMP, resulting in retention of the protein in the rough endoplasmic reticulum (rER) of chondrocytes. This accumulation of COMP in the rER creates the phenotypic enlarged rER cisternae in the cells, which is believed to compromise chondrocyte function and eventually cause cell death. To study the molecular mechanisms involved with the disease, we sought to develop an in vitro model that recapitulates the PSACH phenotype. Normal human chondrocytes were transfected with wildtype (wt-) COMP or with mutant COMP (D469del; mt-) recombinant adenoviruses and grown in a nonattachment redifferentiating culture system that provides an environment allowing formation of a differentiated chondrocyte nodule. Visualization of normal cells expressing COMP suggested the hallmarks of the PSACH phenotype. Mutant COMP expressed in normal cells was retained in enlarged rER cisternae, which also retained IX collagen (COL9) and matrilin-3 (MATN3). Although these proteins were secreted normally into the ECM of the wt-COMP nodules, reduced secretion of these proteins was observed in nodules composed of cells transfected with mt-COMP. The findings complement those found in chondrocytes from PSACH patient growth plates. This new model system allows for production of PSACH chondrocyte pathology in normal costochondral chondrocytes and can be used for future mechanistic and potential gene therapy studies. © 2006 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res [source] Combined role of type IX collagen and cartilage oligomeric matrix protein in cartilage matrix assembly: Cartilage oligomeric matrix protein counteracts type IX collagen,induced limitation of cartilage collagen fibril growth in mouse chondrocyte culturesARTHRITIS & RHEUMATISM, Issue 12 2009K. Blumbach Objective Defects in the assembly and composition of cartilage extracellular matrix are likely to result in impaired matrix integrity and increased susceptibility to cartilage degeneration. The aim of this study was to determine the functional interaction of the collagen fibril,associated proteins type IX collagen and cartilage oligomeric matrix protein (COMP) during cartilage matrix formation. Methods Primary chondrocytes from mice deficient in type IX collagen and COMP (double-deficient) were cultured in monolayer or alginate beads. Anchorage of matrix proteins, proteoglycan and collagen content, collagen crosslinks, matrix metalloproteinase activity, and mechanical properties of the matrix were measured. Electron microscopy was used to study the formation of fibrillar structures. Results In cartilage lacking both type IX collagen and COMP, matrilin 3 showed decreased matrix anchorage. Less matrilin 3 was deposited in the matrix of double-deficient chondrocytes, while larger amounts were secreted into the medium. Proteoglycans were less well retained in the matrix formed in alginate cultures, while collagen deposition was not significantly affected. Electron microscopy revealed similar cartilage collagen fibril diameters in the cultures of double-deficient and wild-type chondrocytes. In contrast, a larger fibril diameter was observed in the matrix of chondrocytes deficient in only type IX collagen. Conclusion Our results show that type IX collagen and COMP are involved in matrix assembly by mediating the anchorage and regulating the distribution of other matrix macromolecules such as proteoglycans and matrilins and have counteracting effects on collagen fibril growth. Loss of type IX collagen and COMP leads to matrix aberrations that may make cartilage more susceptible to degeneration. [source] Decreased physical function and increased pain sensitivity in mice deficient for type IX collagenARTHRITIS & RHEUMATISM, Issue 9 2009Kyle D. Allen Objective In mice with Col9a1 gene inactivation (Col9a1,/,), osteoarthritis (OA) and intervertebral disc degeneration develop prematurely. The aim of this study was to investigate Col9a1,/, mice for functional and symptomatic changes that may be associated with these pathologies. Methods Col9a1,/, and wild-type mice were investigated for reflexes, functional impairment (beam walking, pole climbing, wire hang, grip strength), sensorimotor skills (rotarod), mechanical sensitivity (von Frey hair), and thermal sensitivity (hot plate/tail flick). Gait was also analyzed to determine velocity, stride frequency, symmetry, percentage stance time, stride length, and step width. Postmortem, sera obtained from the mice were analyzed for hyaluronan, and their knees and spines were graded histologically for degeneration. Results Col9a1,/, mice had compensatory gait changes, increased mechanical sensitivity, and impaired physical ability. Col9a1,/, mice ambulated with gaits characterized by increased percentage stance times and shorter stride lengths. These mice also had heightened mechanical sensitivity and were deficient in contact righting, wire hang, rotarod, and pole climbing tasks. Male Col9a1,/, mice had the highest mean serum hyaluronan levels and strong histologic evidence of cartilage erosion. Intervertebral disc degeneration was also detected, with Col9a1,/, mice having an increased incidence of disc tears. Conclusion These data describe a Col9a1,/, behavioral phenotype characterized by altered gait, increased mechanical sensitivity, and impaired function. These gait and functional differences suggest that Col9a1,/, mice select locomotive behaviors that limit joint loads. The nature and magnitude of behavioral changes were largest in male mice, which also had the greatest evidence of knee degeneration. These findings suggest that Col9a1,/, mice present behavioral changes consistent with anatomic signs of OA and intervertebral disc degeneration. [source] The Assembly and Remodeling of the Extracellular Matrix in the Growth Plate in Relationship to Mineral Deposition and Cellular Hypertrophy: An In Situ Study of Collagens II and IX and Proteoglycan,JOURNAL OF BONE AND MINERAL RESEARCH, Issue 2 2002Fackson Mwale Abstract The recent development of new specific immunoassays has provided an opportunity to study the assembly and resorption of type II and IX collagens of the extracellular matrix in relationship to endochondral calcification in situ. Here, we describe how in the bovine fetal physis prehypertrophic chondrocytes deposit an extensive extracellular matrix that, initially, is rich in both type II and type IX collagens and proteoglycan (PG; principally, aggrecan). The majority of the ,1(IX)-chains lack the NC4 domain consistent with our previous studies with cultured chondrocytes. During assembly, the molar ratio of type II/COL2 domain of the ,1(IX)-chain varied from 8:1 to 25:1. An increase in the content of Ca2+ and inorganic phosphate (Pi) was initiated in the prehypertrophic zone when the NC4 domain was removed selectively from the ,1(IX)-chain. This was followed by the progressive loss of the ,1(IX) COL2 domain and type II collagen. In the hypertrophic zone, the Ca2+/Pi molar ratio ranged from 1.56 to a maximum of 1.74, closely corresponding to that of mature hydroxyapatite (1.67). The prehypertrophic zone had an average ratio Ca2+/Pi ranging from 0.25 to 1, suggesting a phase transformation. At hypertrophy, when mineral content was maximal, type II collagen was reduced maximally in content coincident with a peak of cleavage of this molecule by collagenase when matrix metalloproteinase 13 (MMP-13) expression was maximal. In contrast, PG (principally aggrecan) was retained when hydroxyapatite was formed consistent with the view that this PG does not inhibit and might promote calcification in vivo. Taken together with earlier studies, these findings show that matrix remodeling after assembly is linked closely to initial changes in Ca2+ and Pi to subsequent cellular hypertrophy and mineralization. These changes involve a progressive and selective removal of types II and IX collagens with the retention of the PG aggrecan. [source] |