IV Secretion (iv + secretion)

Distribution by Scientific Domains

Kinds of IV Secretion

  • type iv secretion

  • Terms modified by IV Secretion

  • iv secretion system

  • Selected Abstracts

    VirE2, a Type IV secretion substrate, interacts with the VirD4 transfer protein at cell poles of Agrobacterium tumefaciens

    Krishnamohan Atmakuri
    Summary Agrobacterium tumefaciens transfers oncogenic DNA and effector proteins to plant cells during the course of infection. Substrate translocation across the bacterial cell envelope is mediated by a type IV secretion (TFS) system composed of the VirB proteins, as well as VirD4, a member of a large family of inner membrane proteins implicated in the coupling of DNA transfer intermediates to the secretion machine. In this study, we demonstrate with novel cytological screens , a two-hybrid (C2H) assay and bimolecular fluorescence complementation (BiFC) , and by immunoprecipitation of chemically cross-linked protein complexes that the VirE2 effector protein interacts directly with the VirD4 coupling protein at cell poles of A. tumefaciens. Analyses of truncation derivatives showed that VirE2 interacts via its C terminus with VirD4, and, further, an NH2 -terminal membrane-spanning domain of VirD4 is dispensable for complex formation. VirE2 interacts with VirD4 independently of the virB -encoded transfer machine and T pilus, the putative periplasmic chaperones AcvB and VirJ, and the T-DNA transfer intermediate. Finally, VirE2 is recruited to polar-localized VirD4 as a complex with its stabilizing secretion chaperone VirE1, yet the effector,coupling protein interaction is not dependent on chaperone binding. Together, our findings establish for the first time that a protein substrate of a type IV secretion system is recruited to a member of the coupling protein superfamily. [source]

    Agrobacterium type IV secretion is a two-step process in which export substrates associate with the virulence protein VirJ in the periplasm

    Mario Pantoja
    Summary Type IV secretion systems are virulence determinants in many bacteria and share extensive homology with many conjugal transfer systems. Although type IV systems and their homologues have been studied widely, the mechanism by which substrates are secreted remains unclear. In Agrobacterium, we show that type IV secretion substrates that lack signal peptides form a soluble complex in the periplasm with the virulence protein VirJ. Additionally, these proteins co-precipitate with constituents of the type IV transporter: the VirB pilus and the VirD4 protein. Our findings suggest that the substrate proteins localized to the periplasm may associate with the pilus in a manner that is mediated by VirJ, and suggest a two-step process for type IV secretion in Agrobacterium. Our analyses of protein,protein interactions in a variety of mutant backgrounds indicate that substrates are probably secreted independently of one another. [source]

    Microreview: Type IV secretion in the obligatory intracellular bacterium Anaplasma phagocytophilum

    Yasuko Rikihisa
    Summary Anaplasma phagocytophilum is an obligatory intracellular bacterium that infects neutrophils, the primary host defence cells. Consequent effects of infection on host cells result in a potentially fatal systemic disease called human granulocytic anaplasmosis. Despite ongoing reductive genome evolution and deletion of most genes for intermediary metabolism and amino acid biosynthesis, Anaplasma has also experienced expansion of genes encoding several components of the type IV secretion (T4S) apparatus. Two A. phagocytophilum T4S effector molecules are currently known; Anaplasma translocated substrate 1 (Ats-1) and ankyrin repeat domain-containing protein A (AnkA) have C-terminal positively charged amino acid residues that are recognized by the T4S coupling protein, VirD4. AnkA and Ats-1 contain eukaryotic protein motifs and are uniquely evolved in the family Anaplasmataceae; Ats-1 contains a mitochondria-targeting signal. They are abundantly produced and secreted into the host cytoplasm, are not toxic to host cells, and manipulate host cell processes to aid in the infection process. At the cellular level, the two effectors have distinct subcellular localization and signalling in host cells. Thus in this obligatory intracellular pathogen, the T4S system has evolved as a host-subversive survival factor. [source]

    Helicobacter pylori,host cell interactions mediated by type IV secretion

    Kevin M. Bourzac
    Summary Helicobacter pylori is a human-specific gastric pathogen that colonizes over half the world's population. Infection with this bacterium is associated with a spectrum of gastric pathologies ranging from mild gastritis to peptic ulcers and gastric cancer. A strong predictor of severe disease outcome is infection with a bacterial strain harbouring the cag (cytotoxin associated gene) pathogenicity island (PAI), a 40 kb stretch of DNA that encodes homologues of several components of a type IV secretion system (TFSS). One gene within the cag PAI, cagA, has been shown to encode a substrate for the TFSS which is translocated into host cells and causes multiple changes in host cell signalling. Here we review recent advances in the characterization of type IV secretion, the activities of CagA and CagA-independent effects of the TFSS, which are contributing to our understanding of H. pylori pathogenesis. [source]