Home About us Contact | |||
Ionization Quadrupole Time-of-flight Tandem Mass Spectrometry (ionization + quadrupole_time-of-flight_tandem_mass_spectrometry)
Selected AbstractsHighly Chemo- and Regioselective Reduction of Aromatic Nitro Compounds Catalyzed by Recyclable Copper(II) as well as Cobalt(II) PhthalocyaninesADVANCED SYNTHESIS & CATALYSIS (PREVIOUSLY: JOURNAL FUER PRAKTISCHE CHEMIE), Issue 11-12 2010Upendra Sharma Abstract Copper/cobalt phthalocyanines were established for the first time as catalysts for the very efficient chemo- and regioselective reduction of aromatic nitro compounds to generate the corresponding amines. The selective reduction of nitro compounds was observed in the presence of a large range of functional groups such as aldehyde, keto, acid, amide, ester, halogen, lactone, nitrile and heterocyclic functional groups. Furthermore, the present method was found to be highly regioselective towards the reduction of aromatic dinitro compounds in a short time with high yields. In most of the cases the conversion and selectivity were >99% as monitored by GC-MS. The reduction mechanism was elucidated by UV-vis and electrospray ionization quadrupole time-of-flight tandem mass spectrometry. [source] Elucidation of the molecular structure of lipid A isolated from both a rough mutant and a wild strain of Aeromonas salmonicida lipopolysaccharides using electrospray ionization quadrupole time-of-flight tandem mass spectrometryRAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 12 2005Anas El-Aneed The chemical structure of lipid A, isolated by mild acid hydrolysis from a rough mutant and a wild strain of Aeromonas salmonicida lipopolysaccharide, was investigated using electrospray ionization quadrupole time-of-flight (QqToF) hybrid tandem mass spectrometry and showed a great degree of microheterogeneity. The chemical structure of the main constituent of this heterogeneous mixture was identified as a , -D-(1,,,6) linked D-glucosamine disaccharide substituted by two phosphate groups, one being bound to the non-reducing end at position O-4, and the other to the position O-1 of the reducing end of the D-glucosamine disaccharide. The location of the fatty acids linked to the disaccharide backbone was established by identifying diagnostic ions in the conventional QqToF-MS scan. Low-energy collision tandem mass spectrometry analysis of the selected precursor diagnostic ions confirmed, unambiguously, their proposed molecular structures. We have established that myristyloxylauric (C14:0(3- O(12:0))) acid residues were both N-2, and O-3, linked to the non-reducing end of the D-GlcN residue, and that two 3-hydroxymyristic (C14:0(3-OH)) acid chains acylated the remaining positions of the reducing end. The MS and MS/MS data obtained allowed us to determine the complex molecular structure of lipid A. The QqToF-MS/MS instrument has shown excellent superiority over a conventional quadrupole-hexapole-quadrupole tandem instrument which failed to fragment the selected precursor ion. Copyright © 2005 John Wiley & Sons, Ltd. [source] Identification of monovinyl tripropionic acid porphyrins and metabolites from faeces of patients with hereditary coproporphyria by high-performance liquid chromatography/electrospray ionization quadrupole time-of-flight tandem mass spectrometryRAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 22 2004Malcolm Danton The original article to which this Erratum refers was published in Rapid Commun. Mass Spectrom. 2004; 18: 2309,2316 [source] Quantification of clenbuterol in equine plasma, urine and tissue by liquid chromatography coupled on-line with quadrupole time-of-flight mass spectrometryRAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 17 2002Fuyu Guan Clenbuterol (CBL) is a potent ,2 -adrenoceptor agonist used for the management of respiratory disorders in the horse. The detection and quantification of CBL can pose a problem due to its potency, the relatively low dose administered to the horse, its slow clearance and low plasma concentrations. Thus, a sensitive method for the quantification and confirmation of CBL in racehorses is required to study its distribution and elimination. A sensitive and fast method was developed for quantification and confirmation of the presence of CBL in equine plasma, urine and tissue samples. The method involved liquid-liquid extraction (LLE), separation by liquid chromatography (LC) on a short cyano column, and pseudo multiple reaction monitoring (pseudo-MRM) by electrospray ionization quadrupole time-of-flight tandem mass spectrometry (ESI-QTOF-MS/MS). At very low concentrations (picograms of CBL/mL), LLE produced better extraction efficiency and calibration curves than solid-phase extraction (SPE). The operating parameters for electrospray QTOF and yield of the product ion in MRM were optimized to enhance sensitivity for the detection and quantification of CBL. The quantification range of the method was 0.013,10,ng of CBL/mL plasma, 0.05,20,ng/0.1,mL of urine, and 0.025,10,ng/g tissue. The detection limit of the method was 13,pg/mL of plasma, 50,pg/0.1,mL of urine, and 25,pg/g of tissue. The method was successfully applied to the analysis of CBL in plasma, urine and various tissue samples, and in pharmacokinetic (PK) studies of CBL in the horse. CBL was quantified for 96,h in plasma and 288,h in urine post-administration of CLB (1.6,µg/kg, 2,×,daily,×,7 days). This method is useful for the detection and quantification of very low concentrations of CBL in urine, plasma and tissue samples. Copyright © 2002 John Wiley & Sons, Ltd. [source] |