Ionization Process (ionization + process)

Distribution by Scientific Domains


Selected Abstracts


Evaluation of pyridoindoles, pyridylindoles and pyridylpyridoindoles as matrices for ultraviolet matrix-assisted laser desorption/ionization time-of-flight mass spectrometry

RAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 23 2001
Hiroshi Nonami
In an effort to gain an understanding of the processes governing ultraviolet matrix-assisted laser desorption/ionization (UV-MALDI), direct comparison was made of the mass spectra of proteins, carbohydrates and synthetic polymers (polyethylene glycol, polyester and polyamide) by using pyridylindoles, pyridoindoles and pyridylpyridoindoles as UV (337,nm)-MALDI-TOFMS matrices in positive and negative ion mode. In order to study the combined effect of the indole N-H and the pyridine nitrogen of the MALDI matrix on the desorption/ionization process in MALDI, compounds were selected that include either or both of these functions in their structure. Within the compounds studied only those that possess simultaneously both functions in a 1,4-relation behave as very good matrices for proteins. These compounds also work as matrices for some carbohydrates and synthetic polymers used as analytes in the present study. Some of the compounds were also found to be useful for the post-source decay (PSD) analysis of cyclodextrins in positive and negative ion mode. In several cases we also examined the matrix behavior of the corresponding N-methylindole derivatives. Copyright © 2001 John Wiley & Sons, Ltd. [source]


Simultaneous HPLC-DAD-MS (ESI+) determination of structural and geometrical isomers of carotenoids in mature grapes,

JOURNAL OF MASS SPECTROMETRY (INCORP BIOLOGICAL MASS SPECTROMETRY), Issue 9 2010
Pasquale Crupi
Abstract Carotenoids are uniquely functional polyene pigments ubiquitous in nature; aside from being responsible for the color of a wide variety of vegetables, interest is being focused on food carotenoids due to their likely health benefits. From analytical point of view, it is important to unequivocally identify individual carotenoid compounds in many food stuffs. Therefore, isolation of standards from natural sources must be encouraged for accurate identifications. Like many fruits, mature grape berries contain numerous carotenoid compounds, mostly found in the skin at levels two to three times higher than in the pulp. Carotenoid compounds in a typical wine grape variety (Negroamaro) grown in Apulian region were investigated by reversed-phase C30 (RP-30) HPLC-DAD-MS (ESI+) analysis. As a consequence of an unusual ionization process of carotenoids, their mass spectra registered in the positive ion mode comprised both protonated molecules and molecular ion radicals with little fragmentation. Additionally, selective collision-induced dissociation (CID) experiments, together with fine structures of the UV,vis spectra, were used to differentiate structural and geometrical isomers. This technique allowed the simultaneous determination of regio- and cis -isomers of lutein (zeaxanthin, 9Z and 9,Z -lutein) and a cis -isomer of ,-carotene (9Z - ,-carotene), 5,6-epoxy xanthophylls (violaxanthin, (9,Z)-neoxanthin, lutein-5,6-epoxide) and 5,8-epoxy xanthophylls diasteroisomers (neochrome, auroxanthin, luteoxanthin, flavoxanthin, chrysanthemaxanthin). Copyright © 2010 John Wiley & Sons, Ltd. [source]


Molecular dynamics simulations of MALDI: laser fluence and pulse width dependence of plume characteristics and consequences for matrix and analyte ionization

JOURNAL OF MASS SPECTROMETRY (INCORP BIOLOGICAL MASS SPECTROMETRY), Issue 4 2010
Richard Knochenmuss
Abstract Molecular dynamics simulations of matrix-assisted laser desorption/ionization were carried out to investigate laser pulse width and fluence effects on primary and secondary ionization process. At the same fluence, short (35 or 350 ps) pulses lead to much higher initial pressures and ion concentrations than longer ones (3 ns), but these differences do not persist because the system relaxes toward local thermal equilibrium on a nanosecond timescale. Higher fluences accentuate the initial disparities, but downstream differences are not substantial. Axial velocities of ions and neutrals are found to span a wide range, and be fluence dependent. Total ion yield is only weakly dependent on pulse width, and consistent with experimental estimates. Secondary reactions of matrix cations with analyte neutrals are efficient even though analyte ions are ablated in clusters of matrix. Copyright © 2010 John Wiley & Sons, Ltd. [source]


Triggered star formation in bright-rimmed clouds: the Eagle nebula revisited

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 1 2006
J. Miao
ABSTRACT A three-dimensional smoothed particle hydrodynamics model has been extended to study the radiation-driven implosion effect of massive stars on the dynamical evolution of surrounding molecular clouds. The new elements in the upgraded code are the inclusion of Lyman continuum in the incident radiation flux and the treatment of hydrogen ionization process; the introduction of ionization heating and recombination cooling effects; and the addition of a proper description of the magnetic and turbulent pressures to the internal pressure of the molecular cloud. This extended code not only provides a realistic model to trace the dynamical evolution of a molecular cloud, but also can be used to model the kinematics of the ionization and shock fronts and the photoevaporating gas surrounding the molecular cloud, which the previous code is unable to handle. The application of this newly developed model to the structure of the middle Eagle nebula finger suggests that the shock induced by the ionizing radiation at the front side of the head precedes an ionization front moving towards the centre of the core, and that the core at the fingertip is at a transition stage evolving toward a state of induced star formation. The dynamical evolution of the velocity field of the simulated cloud structure is discussed to illustrate the role of the self-gravity and the different cloud morphologies which appear at different stages in the evolutionary process of the cloud. The motion of the ionization front and the evaporating gas are also investigated. The modelled gas evaporation rate is consistent with that of other current models and the density, temperature and chemical profiles are in agreement with the observed values. The relative lifetimes of different simulated cloud morphologies suggest a possible answer to the question of why more bright-rimmed clouds are observed to possess a flat-core than an elongated-core morphology. [source]


Perturbations produced by electrospray ionization mass spectrometry in the speciation of aluminium(III)/1,6-dimethyl-4-hydroxy-3-pyridinecarboxylate aqueous solutions

RAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 7 2010
Valerio B. Di Marco
Electrospray ionization mass spectrometry (ESI-MS) is very often employed to study metal/ligand equilibria in aqueous solution. However, the ionization process can introduce perturbations which affect the speciation results in an unpredictable way. It is necessary to identify these perturbations in order to correctly interpret the ESI-MS speciation results. Aluminium(III)/1,6-dimethyl-4-hydroxy-3-pyridinecarboxylate (DQ716) aqueous solutions at various pH were analysed by ESI-MS, and speciation results were compared with those obtained by equilibrium techniques. Differences observed were both qualitative and quantitative. The ESI-MS spectral changes due to different settings of the following instrumental parameters were analyzed: the solution flow rate (FS), the nebulizer gas flow rate (FG), the potential applied at the entrance capillary (EC), and the temperature of the drying gas (TG). The effects produced by FS and EC on the spectra strongly suggest the key role of surface activity in determining the relative fraction of the ions reaching the detector. The experimental effects of FS and TG were interpreted considering the presence of at least two reactions in the gas phase and a dimerization occurring in the droplets. These perturbations cannot be generalized because they appear to be chemical system-related and instrument-dependent. Therefore, the identification of perturbations is a required task for any metal-ligand equilibrium study performed by ESI-MS. Our results indicate that perturbations can be identified by evaluating the effects produced in the spectra by a change of instrumental parameters. Copyright © 2010 John Wiley & Sons, Ltd. [source]


Evidence for involvement of the backbone in the ionization process of nucleic acids by matrix-assisted laser desorption/ionization

RAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 10 2003
Fenhong Song
No abstract is available for this article. [source]


Stabilities of Trityl-Protected Substrates: The Wide Mechanistic Spectrum of Trityl Ester Hydrolyses

CHEMISTRY - A EUROPEAN JOURNAL, Issue 25 2010
Markus Horn
Abstract Ionization rates of para -substituted triphenylmethyl (trityl) acetates, benzoates, and para -nitrobenzoates have been determined in aqueous acetonitrile and aqueous acetone at 25,°C. Conventional and stopped-flow techniques have been used to evaluate rate constants ranging from 1.38×10,5 to 2.15×102,s,1 by conductimetry and photospectrometry methods. The varying stabilities of the differently substituted tritylium ions account for a gradual change of reaction mechanism. Poorly stabilized carbocations are generated slowly by the ionization of their covalent precursors and trapped fast by water. Better stabilized carbocations are generated more rapidly and accumulate, so that ionization and trapping by water can be observed as separate steps in a single experiment. Finally, highly stabilized tritylium ions do not react with water, and only the rates of their formation could be measured. The ionization rate constants correlate linearly with Winstein's ionizing powers Y; the low slopes (0.17ionization process. [source]


Elementary Many-Particle Processes in Plasma Microfields

CONTRIBUTIONS TO PLASMA PHYSICS, Issue 3 2006
M. Yu.
Abstract The effect of electric and magnetic plasma microfields on elementary many-body processes in plasmas is considered. As detected first by Inglis and Teller in 1939, the electric microfield controls several elementary processes in plasmas as transitions, line shifts and line broadening. We concentrate here on the many-particle processes ionization, recombination, and fusion and study a wide area of plasma parameters. In the first part the state of art of investigations on microfield distributions is reviewed in brief. In the second part, various types of ionization processes are discussed with respect to the influence of electric microfields. It is demonstrated that the processes of tunnel and rescattering ionization by laser fields as well as the process of electron collisional ionization may be strongly influenced by the electric microfields in the plasma. The third part is devoted to processes of microfield action on fusion processes and the effects on three-body recombination are investigated. It is shown that there are regions of plasma densities and temperatures, where the rate of nuclear fusion is accelerated by the electric microfields. This effect may be relevant for nuclear processes in stars. Further, fusion processes in ion clusters are studied. Finally we study in this section three-body recombination effects and show that an electric microfield influences the three-body electron-ion recombination via the highly excited states. In the fourth part, the distribution of the magnetic microfield is investigated for equilibrium, nonequilibrium, and non-uniform magnetized plasmas. We show that the field distribution in a neutral point of a non-relativistic ideal equilibrium plasma is similar to the Holtsmark distribution for the electrical microfield. Relaxation processes in nonequilibrium plasmas may lead to additional microfields. We show that in turbulent plasmas the broadening of radiative electron transitions in atoms and ions, without change of the principle quantum number, may be due to the Zeeman effect and may exceed Doppler and Stark broadening as well. Further it is shown that for optical radiation the effect of depolarization of a linearly polarized laser beams propagating through a magnetized plasma may be rather strong. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


Modeling Electron and Hole Transport in Fluoroarene-Oligothiopene Semiconductors: Investigation of Geometric and Electronic Structure Properties,

ADVANCED FUNCTIONAL MATERIALS, Issue 2 2008
E. Koh
Abstract A theoretical study using density functional theory is undertaken to gain insight into how the structural, electronic, and electron-transfer characteristics of three Fluoroarene-oligothiophene semiconductors influence the preferred transport of electrons versus holes in field-effect transistor applications. The intermolecular electronic coupling interactions are analyzed through both a simplified energy-splitting in dimer (ESID) model and as a function of the entire dimer Hamiltonian in order to understand the impact of site energy differences; our results indicate that these differences are generally negligible for the series and, hence, use of the ESID model is valid. In addition, we also investigate the reduction and oxidation processes to understand the magnitudes of the intramolecular reorganization energy for the charge-hopping process and expected barrier heights for electron and hole injection into these materials. From the electronic coupling and intramolecular reorganization energies, estimates of the nearest-neighbor electron-transfer hopping rate constant for electrons are obtained. The ionization energetics suggest favored electron injection for the system with perfluoroarene groups at the end of the thiophene core, in agreement with experiments. The combined analyses of the electron-transfer properties and ionization processes suggest possible ambipolar behavior for these materials under favorable device conditions. [source]


Investigation of cytolysin variants by peptide mapping: enhanced protein characterization using complementary ionization and mass spectrometric techniques

RAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 22 2002
Stanley M. Stevens Jr.
Matrix-assisted laser desorption/ionization (MALDI) and electrospray ionization (ESI) have been used in conjunction with time-of-flight (TOF) and quadrupole ion trap (IT) mass spectrometry, respectively, to analyze various cytolysin proteins isolated from the sea anemone Stichodactyla helianthus and digested by the protease trypsin. By employing different ionization methods, the subsequent changes in ionization selectivity for the peptides in the digested protein samples resulted in ion abundance variation reflected in the mass spectra. Upon investigation of this variation generated by the two ionization processes, it has been shown in this study that enhanced protein coverage (e.g., >95% for cytolysin III) can be achieved. Additionally, capillary and microbore reversed-phase high-performance liquid chromatography (RP-HPLC) coupled with ESI mass spectrometry (MS) as well as flow injection analysis by nanoflow ESI-MS afforded the necessary limit of detection (LOD) for detailed structural information of the cytolysin proteins by tandem mass spectrometry (MS/MS) methods. It can be concluded that cytolysins II and III correspond to sticholysins I and II, that "cytolysin I" is a mixture of modified forms of cytolysins II and III, and that "cytolysin IV" is an incompletely processed precursor of cytolysin III. Copyright © 2002 John Wiley & Sons, Ltd. [source]


Accumulation Process of High-Z Impurity in Toroidal Rotating Tokamak Plasma

CONTRIBUTIONS TO PLASMA PHYSICS, Issue 3-5 2010
K. Hoshino
Abstract The accumulation process of high-Z impurity in toroidal rotating tokamak plasma is investigated. A new inward pinch of high-Z impurity due to the ionization/recombination processes is derived using an analytic model. This inward pinch is driven by the large deviation of a drift orbit from a magnetic surface and the resultant variation of the charge state along the drift orbit. The pinch velocity increases with increasing toroidal rotation speed in both the co-direction and the ctr-direction. The inward pinch expected by the analytic model is really observed in the numerical simulation using the IMPGYRO code (© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]