Ion Mass Spectrometry (ion + mass_spectrometry)

Distribution by Scientific Domains

Kinds of Ion Mass Spectrometry

  • liquid secondary ion mass spectrometry
  • negative ion mass spectrometry
  • secondary ion mass spectrometry
  • time-of-flight secondary ion mass spectrometry


  • Selected Abstracts


    THE APPLICATION OF TIME-OF-FLIGHT SECONDARY ION MASS SPECTROMETRY (ToF-SIMS) TO THE CHARACTERIZATION OF OPAQUE ANCIENT GLASSES*

    ARCHAEOMETRY, Issue 6 2009
    F. J. M. RUTTEN
    Time-of-flight secondary ion mass spectrometry (ToF-SIMS) has been used, for the first time, for the characterization of opaque ancient glasses. Isotope-specific chemical imaging with sub-micron resolution enabled the separate analysis of opacifiying inclusions and the surrounding glass matrix. Phase identification has been demonstrated and quantification of the matrix composition has been investigated by use of Corning Glass Standard B as a model. Trace element detection limits are typically in the range 0.5,5.0 ppm atomic,in favourable cases down to 0.01 ppm. For the analysis of inclusions in particular, this has the potential to provide new information of use in establishing provenance and trade routes by ,fingerprinting' as well as the investigation of manufacturing techniques, as demonstrated by comparisons between glasses and with EDX data from the same samples. [source]


    Electrospinning and alignment of polyaniline-based nanowires and nanotubes,

    POLYMER ENGINEERING & SCIENCE, Issue 9 2008
    A. Attout
    Polyaniline (PANi) nanowires and nanotubes are processed by electrospinning. Nanowires are electrospinned using PANi/PEO and PANi/PMMA polymer blends. The morphology and composition of these nanofibers are determined by scanning electron microscopy (SEM) and Nano-Secondary Ion Mass Spectrometry (Nano-SIMS). The conductive polymer seems more homogeneously distributed for the PANi/PEO than for the PANi/PMMA blend nanowires, which exhibit a phase separation. On the other hand, pure PANi nanotubes are prepared using PMMA nanowires as a template. The synthesis is followed by X-ray photoelectron spectroscopy (XPS), SEM and Nano-SIMS. Moreover, a simple method based on electrostatic steering allows us to align these fibers on a substrate. POLYM. ENG. SCI., 2008. © 2007 Society of Plastics Engineers [source]


    Preparation of GaN crystals by heating a Li3N-added Ga melt in Na vapor and their photoluminescence

    CRYSTAL RESEARCH AND TECHNOLOGY, Issue 1 2007
    Takahiro Yamada
    Abstract GaN crystals were prepared by heating a Ga melt with 1 at% Li3N against Ga at 750 °C in Na vapor under N2 pressures of 0.4,1.0 MPa. The GaN crystals grown at 1.0 MPa of N2 were colorless and transparent prismatic, having a size of approximately 0.7 mm in length. A secondary ion mass spectrometry (SIMS) showed the contaminant of lithium in the obtained crystals. A large broad yellow band emission peak of 2.28 eV was observed at room temperature in the photoluminescence spectrum in addition to the near band emission peak of GaN at 3.39 eV and a small broad satellite emission at 3.24 eV. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


    A comparative study for profiling ultrathin boron layers in Si

    CRYSTAL RESEARCH AND TECHNOLOGY, Issue 12 2003
    E. Basaran
    Abstract The carrier concentration-depth profiles of ultrathin boron layers in Si, grown by molecular beam epitaxy, are determined by the electrochemical capacitance-voltage (ECV) and the spreading resistance (SR) profiling techniques. Secondary ion mass spectrometry (SIMS) is employed as a base for the comparison of the results. It has been shown that, under carefully chosen conditions, both ECV and SR techniques are able to resolve ultrathin layers including a delta layer, however ECV match better with the results of SIMS than that of SR. (© 2003 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


    Accumulation and DNA damage in fathead minnows (Pimephales promelas) exposed to 2 brominated flame-retardant mixtures, Firemaster® 550 and Firemaster® BZ-54

    ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 3 2010
    Jonathan S. Bearr
    Abstract Firemaster® 550 and Firemaster® BZ-54 are two brominated formulations that are in use as replacements for polybrominated diphenyl ether (PBDE) flame retardants. Two major components of these mixtures are 2,3,4,5-tetrabromo-ethylhexylbenzoate (TBB) and 2,3,4,5-tetrabromo-bis(2-ethylhexyl) phthalate (TBPH). Both have been measured in environmental matrices; however, scant toxicological information exists. The present study aimed to determine if these brominated flame-retardant formulations are bioavailable and adversely affect DNA integrity in fish. Fathead minnows (Pimephales promelas) were orally exposed to either FM 550, FM BZ54, or the nonbrominated form of TBPH, di-(2-ethylhexyl) phthalate (DEHP) for 56 d and depurated (e.g., fed clean food) for 22 d. At several time points, liver and blood cells were collected and assessed for DNA damage. Homogenized fish tissues were extracted and analyzed on day 0 and day 56 to determine the residue of TBB and TBPH and the appearance of any metabolites using gas chromatography-electron-capture negative ion mass spectrometry (GC/ECNI-MS). Significant increases (p,<,0.05) in DNA strand breaks from liver cells (but not blood cells) were observed during the exposure period compared with controls, although during depuration these levels returned to control. Both parent compounds, TBB and TBPH, were detected in tissues at approximately 1% of daily dosage along with brominated metabolites. The present study provides evidence for accumulation, metabolism, and genotoxicity of these new formulation flame retardants in fish and highlights the potential adverse effects of TBB- and TBPH-formulated fire retardants to aquatic species. Environ. Toxicol. Chem. 2010;29:722,729. © 2009 SETAC [source]


    Neutron Reflectometry: A Tool to Investigate Diffusion Processes in Solids on the Nanometer Scale,

    ADVANCED ENGINEERING MATERIALS, Issue 6 2009
    Harald Schmidt
    Abstract The investigation of self-diffusion for the characterization of kinetic process in solids is one of the most fundamental tasks in materials science. We present the method of neutron reflectometry (NR), which allows the detection of extremely short diffusion lengths in the order of 1,nm and below at corresponding low self-diffusivities between 10,25 and 10,20,m2 s,1. Such a combination of values cannot be achieved by conventional methods of diffusivity determination, like the radiotracer method, secondary ion mass spectrometry, quasielastic neutron scattering, or nuclear magnetic resonance. Using our method, the extensive characterization of materials which are in a non-equilibrium state, like amorphous or nanocrystalline solids becomes possible. Due to the small experimentally accessible diffusion length microstructural changes (grain growth and crystallization) taking place simultaneously during the actual diffusion experiment can be avoided. For diffusion experiments with NR isotope multilayers are necessary, which are chemical homogeneous but isotope modulated films. We illustrate the basic aspects and potential of this technique using model systems of different classes of materials: single crystalline germanium, amorphous silicon nitride, and nanocrystalline iron. [source]


    Anomalous Oxidation States in Multilayers for Fuel Cell Applications

    ADVANCED FUNCTIONAL MATERIALS, Issue 16 2010
    James M. Perkins
    Abstract Significant recent interest has been directed towards the relationship between interfaces and reports of enhanced ionic conductivity. To gain a greater understanding of the effects of hetero-interfaces on ionic conductivity, advanced analytical techniques including electron microscopy (TEM/STEM), electron energy loss spectroscopy (EELS), and secondary ion mass spectrometry (SIMS) are used to characterize CeO2/Ce0.85Sm0.15O2 multilayer thin films grown by pulsed laser deposition. High quality growth is observed, but ionic conductivity measured by impedance spectroscopy and 18O tracer experiments is consistent with bulk materials. EELS analysis reveals the unusual situation of layers containing only Ce(IV) adjacent to layers containing both Ce(III) and Ce(IV). Post oxygen annealing induced oxygen diffusion and mixed oxidation states in both layers, but only in the vicinity of low angle grain boundaries perpendicular to the layers. The implications of the anomalous behavior of the Ce oxidation states on the design of novel electrolytes for solid oxide fuel cells is discussed. [source]


    Bottom-Up Engineering of Subnanometer Copper Diffusion Barriers Using NH2 -Derived Self-Assembled Monolayers

    ADVANCED FUNCTIONAL MATERIALS, Issue 7 2010
    Arantxa Maestre Caro
    Abstract A 3-aminopropyltrimethoxysilane-derived self-assembled monolayer (NH2SAM) is investigated as a barrier against copper diffusion for application in back-end-of-line (BEOL) technology. The essential characteristics studied include thermal stability to BEOL processing, inhibition of copper diffusion, and adhesion to both the underlying SiO2 dielectric substrate and the Cu over-layer. Time-of-flight secondary ion mass spectrometry and X-ray spectroscopy (XPS) analysis reveal that the copper over-layer closes at 1,2-nm thickness, comparable with the 1.3-nm closure of state-of-the-art Ta/TaN Cu diffusion barriers. That the NH2SAM remains intact upon Cu deposition and subsequent annealing is unambiguously revealed by energy-filtered transmission electron microscopy supported by XPS. The SAM forms a well-defined carbon-rich interface with the Cu over-layer and electron energy loss spectroscopy shows no evidence of Cu penetration into the SAM. Interestingly, the adhesion of the Cu/NH2SAM/SiO2 system increases with annealing temperature up to 7.2,J m,2 at 400,°C, comparable to Ta/TaN (7.5,J m,2 at room temperature). The corresponding fracture analysis shows that when failure does occur it is located at the Cu/SAM interface. Overall, these results demonstrate that NH2SAM is a suitable candidate for subnanometer-scale diffusion barrier application in a selective coating for copper advanced interconnects. [source]


    Affinity-Based Protein Surface Pattern Formation by Ligand Self-Selection from Mixed Protein Solutions

    ADVANCED FUNCTIONAL MATERIALS, Issue 19 2009
    Manish Dubey
    Abstract Photolithographically prepared surface patterns of two affinity ligands (biotin and chloroalkane) specific for two proteins (streptavidin and HaloTag, respectively) are used to spontaneously form high-fidelity surface patterns of the two proteins from their mixed solution. High affinity protein-surface self-selection onto patterned ligands on surfaces exhibiting low non-specific adsorption rapidly yields the patterned protein surfaces. Fluorescence images after protein immobilization show high specificity of the target proteins to their respective surface patterned ligands. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) imaging further supports the chemical specificity of streptavidin and HaloTag for their surface patterned ligands from mixed protein solutions. However, ToF-SIMS did detect some non-specific adsorption of bovine serum albumin, a masking protein present in excess in the adsorbing solutions, on the patterned surfaces. Protein amino acid composition, surface coverage, density, and orientation are important parameters that determine the relative ToF-SIMS fragmentation pattern yields. ToF-SIMS amino acid-derived ion fragment yields summed to produce surface images can reliably determine which patterned surface regions contain bound proteins, but do not readily discriminate between different co-planar protein regions. Principal component analysis (PCA) of these ToF-SIMS data, however, improves discrimination of ions specific to each protein, facilitating surface protein pattern identification and image contrast. [source]


    Combining visual and geochemical analyses to source chert on Southern Baffin Island, Arctic Canada

    GEOARCHAEOLOGY: AN INTERNATIONAL JOURNAL, Issue 4 2009
    S. Brooke Milne
    A combined methodological approach using visual and geochemical methods is introduced and preliminary results of a study illustrating its effectiveness to determine chert source provenance are presented. This study focuses on lithic debitage and raw chert samples collected from the interior of southern Baffin Island, Arctic Canada. Chert is abundant throughout this region yet it occurs as small, scattered surface nodules that are highly variable in color. Prior to this study, little was known about the provenance of this local toolstone and whether it derived from local outcrops, glacial till sheets, or both. Given the pronounced variability exhibited by this chert, we use individual attribute analysis and petrography to impose some kind of analytical order upon an otherwise random aggregation of rocks. Thereafter, inductively coupled plasma mass spectrometry and secondary ion mass spectrometry are used to test the validity of these color categories to determine from how many geochemically distinct sources they derive. Using a standard that measures Al to a ratio of Ga/Zr, our results indicate that all of the raw chert samples derive from a single local source, while the debitage derives from four different sources, including the one that is local. We are confident that this combined methodological approach can be applied in other regions where chert variability is pronounced and source provenance is unknown. © 2009 Wiley Periodicals, Inc. [source]


    Analysis of hopanes and steranes in single oil-bearing fluid inclusions using time-of-flight secondary ion mass spectrometry (ToF-SIMS)

    GEOBIOLOGY, Issue 1 2010
    S. SILJESTRÖM
    Steranes and hopanes are organic biomarkers used as indicators for the first appearance of eukaryotes and cyanobacteria on Earth. Oil-bearing fluid inclusions may provide a contamination-free source of Precambrian biomarkers, as the oil has been secluded from the environment since the formation of the inclusion. However, analysis of biomarkers in single oil-bearing fluid inclusions, which is often necessary due to the presence of different generations of inclusions, has not been possible due to the small size of most inclusions. Here, we have used time-of-flight secondary ion mass spectrometry (ToF-SIMS) to monitor in real time the opening of individual inclusions trapped in hydrothermal veins of fluorite and calcite and containing oil from Ordovician source rocks. Opening of the inclusions was performed by using a focused C60+ ion beam and the in situ content was precisely analysed for C27,C29 steranes and C29,C32 hopanes using Bi3+ as primary ions. The capacity to unambiguously detect these biomarkers in the picoliter amount of crude oil from a single, normal-sized (15,30 ,m in diameter) inclusion makes the approach promising in the search of organic biomarkers for life's early evolution on Earth. [source]


    Application of High Spatial Resolution Laser Ablation ICP-MS to Crystal-Melt Trace Element Partition Coefficient Determination

    GEOSTANDARDS & GEOANALYTICAL RESEARCH, Issue 1 2007
    Maurizio Petrelli
    ICP-MS; ablation laser; éléments en trace; figure de mérite; coefficients de partage entre cristal et liquide In this contribution we evaluate the capabilities of laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) using a 12 ,m spot size. Precision, accuracy and detection limits were assessed on the USGS BCR-2G reference material. We demonstrate that the 12 ,m LA-ICP-MS analyses of experimentally-grown amphibole and garnet are in excellent agreement with secondary ion mass spectrometry (SIMS) trace element determinations on the same crystals. The 12 ,m spot size configuration was subsequently used to determine trace element crystal-melt partition coefficients (Dc/m) for a wide range of trace elements in amphibole in equilibrium with a basanitic melt. The following strategy to determine accurately and evaluate Dc/m is proposed. One or more major elements determined previously by electron probe microanalysis (EPMA) was used to ensure consistency between EPMA and the composition of the aerosol produced by the laser ablation. Measured Dc/m values were successively evaluated using the lattice strain model. The use of this strategy significantly improved the precision and accuracy of Dc/m determination when a LA-ICP-MS configuration with a high spatial resolution was employed. Dans cet article nous évaluons les potentialités de l'ablation laser couplée à un spectromètre de masse à plasma induit (LA-ICP-MS) en travaillant avec un diamètre d'impact de 12 ,m. Précision, justesse et limites de détections sont évaluées sur le matériau de référence BCR-2G de l'USGS. Nous démontrons que les analyses LA-ICP-MS faites avec un diamètre de 12 ,m sur les amphiboles et des grenats synthétiques sont en excellent accord avec les déterminations d'éléments en trace effectuées sur les mêmes cristaux par sonde ionique (SIMS). Ce diamètre d'impact de 12 ,m a donc été sélectionné pour déterminer les coefficients de partage cristal/liquide (Dc/m) pour un grand nombre d'éléments en trace dans une amphibole en équilibre avec un liquide basanitique. Nous proposons la stratégie d'analyse suivante, qui assure une détermination exacte des coefficients de partage Dc/m. Un ou plusieurs des éléments majeurs déterminés auparavant par microsonde électronique (EMPA) est utilisé pour garantir la consistance des données entre EMPA et la composition de l'aérosol produit par l'ablation laser. Les Dc/m mesurés sont ensuite évalués en utilisant le modèle de contrainte de réseau. L'utilisation de cette stratégie améliore de manière significative la précision et la justesse des déterminations de Dc/m quand elle est couplée à l'utilisation d'un système LA-ICP-MS de grande résolution spatiale. [source]


    Further Characterisation of the 91500 Zircon Crystal

    GEOSTANDARDS & GEOANALYTICAL RESEARCH, Issue 1 2004
    Michael Wiedenbeck
    zircon 91500; matériau de référence; intercomparaison entre techniques; valeurs de travail This paper reports the results from a second characterisation of the 91500 zircon, including data from electron probe microanalysis, laser ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS), secondary ion mass spectrometry (SIMS) and laser fluorination analyses. The focus of this initiative was to establish the suitability of this large single zircon crystal for calibrating in situ analyses of the rare earth elements and oxygen isotopes, as well as to provide working values for key geochemical systems. In addition to extensive testing of the chemical and structural homogeneity of this sample, the occurrence of banding in 91500 in both backscattered electron and cathodoluminescence images is described in detail. Blind intercomparison data reported by both LA-ICP-MS and SIMS laboratories indicate that only small systematic differences exist between the data sets provided by these two techniques. Furthermore, the use of NIST SRM 610 glass as the calibrant for SIMS analyses was found to introduce little or no systematic error into the results for zircon. Based on both laser fluorination and SIMS data, zircon 91500 seems to be very well suited for calibrating in situ oxygen isotopic analyses. Cet article présente les résultats d'une nouvelle caractérisation du zircon 91500, dont des données de microanalyse par sonde électronique, d'analyse par ablation laser en couplage à un ICP-MS, d'analyse par sonde ionique (SIMS) et d'analyse par fluorination laser. Le but de cette étude etait de démontrer que ce large monocristal de zircon pouvait être utilisé pour la calibration d'analyses in situ de Terres Rares et des isotopes de I'Oxygène, et en même temps de fournir des valeurs "de travail" pour un certain nombre de systémes géochimiques cruciaux. En complément des tests systématiques d'homogénéité de I'échantillon, tant chimiquement que structurellement, /'ex/sfence, dans le zircon 91500, de zonages visibles en électrons retro diffusés et en cathodoluminescence, est décrite en détail, line comparaison en aveugle des résultats obtenus par LA-ICP-MS et par SIMS, dans des laboratoires différents, montre que les différences systématiques entre les ensembles de données obtenues par ces deux techniques sont très faibles. De plus, I'utilisation du verre NIST SRM 610 comme calibrant lors de I'analyse par SIMS n'introduit qu'une erreur systématique très faible si ce n'est inexistante sur les résultats du zircon. Sur la base des analyses par fluorination laser et par SIMS, le zircon 91500 semble être parfaitement adapte a son utilisation pour la calibration d'analyses isotopiques in situ d'oxygène. [source]


    Reference Minerals for the Microanalysis of Light Elements

    GEOSTANDARDS & GEOANALYTICAL RESEARCH, Issue 2-3 2001
    M. Darby Dyar
    tourmaline; danburite; spodumène; muscovite; isotopes The quantitative determination of light element concentrations in geological specimens represents a major analytical challenge as the electron probe is generally not suited to this task. With the development of new in situ analytical techniques, and in particular the increasing use of secondary ion mass spectrometry, the routine determination of Li, Be and B contents has become a realistic goal. However, a major obstacle to the development of this research field is the critical dependence of SIMS on the availability of well characterized, homogeneous reference materials that are closely matched in matrix (composition and structure) to the sample being studied. Here we report the first results from a suite of large, gem crystals which cover a broad spectrum of minerals in which light elements are major constituents. We have characterized these materials using both in situ and wet chemical techniques. The samples described here are intended for distribution to geochemical laboratories active in the study of light elements. Further work is needed before reference values for these materials can be finalized, but the availability of this suite of materials represents a major step toward the routine analysis of the light element contents of geological specimens. La détermination quantitative des concentrations en éléments légers dans les échantillons géologiques représente un défi analytique majeur, la sonde électronique ne convenant généralement pas pour ce travail. Avec le développement de nouvelles techniques analytiques in situ, en particulier l'utilisation grandissante de la spectrométrie ionique secondaire, la détermination en routine des teneurs en Li, Be et B est devenue un objectif réaliste. Toutefois, un obstacle majeur dans le développement de cette recherche subsiste : la technique SIMS est dépendante de la disponibilité de matériaux de référence bien caractérisés et homogènes proches en composition et en structure de l'échantillon étudié. Nous rapportons ici les premiers résultats obtenus à partie d'un groupe de grands cristaux de qualité gemme recouvrant un large spectre de minéraux composés essentiellement d'éléments légers. Nous avons caractérisé ces matériaux en utilisant à la fois des techniques in situ et par voie humide. Les échantillons décrits ici vont être distribués dans les laboratoires de géochimie spécialisés dans l'étude des éléments légers. Avant la conclusion des valeurs de référence de ces matériaux, des travaux ultérieurs seront nécessaires, mais la disponibilité de l'ensemble de ces matériaux représente une étape importante vers l'analyse en routine des teneurs en éléments légers d'échantillons géologiques. [source]


    Copper and calcium uptake in colored hair

    INTERNATIONAL JOURNAL OF COSMETIC SCIENCE, Issue 2 2010
    K. E. Smart
    J. Cosmet. Sci., 60, 337,345 (May/June 2009) Accepted for publication December 29, 2008. Synopsis During hair coloring a number of disulfide bonds in cystine are oxidized (1) to create cysteic acid, forming binding sites for metal ions such as Ca2+ and Cu2+ from tap water (2). The increased uptake of these metals can have a detrimental impact on fiber properties,for example, reducing shine and causing a poor wet and dry feel (3). In addition, the increased uptake of copper can also contribute to further fiber damage during subsequent coloring due to its ability to take part in metal-induced radical chemistry (4). It is important to know where in the fibers these metals are located in order to either effectively remove these metals or control their chemistry. Nanoscale secondary ion mass spectrometry (NanoSIMS) has been used to locate the calcium and copper within hair that has been treated with a colorant and washed multiple times in tap water containing these ions. Untreated hair is used as a baseline standard material. Images with up to 50-nm spatial resolution of the preferential locations of calcium uptake were obtained, showing a high concentration of calcium in the cuticle region of colored hair, specifically in the sulfur-rich regions (A-layer and exocuticle). [source]


    Time-of-flight secondary ion mass spectrometry analysis of the application of a cationic conditioner to ,clean' hair

    INTERNATIONAL JOURNAL OF COSMETIC SCIENCE, Issue 5 2004
    A. Harvey
    In this study the applicability of the surface-sensitive Time-of-flight secondary ion mass spectrometry (ToF-SIMS) technique to hair analysis and associated aqueous processing is evaluated. ToF-SIMS analysis of ,as received' human hair indicates the presence of silicones, anionic surfactants, and cationic conditioners, from previous treatments, on the fiber surface. Cleaning of the hair with SLS or SLES results in adsorption of the surfactants onto the fiber surface. In particular, the more non-polar surfactant components have greater substantivity for the fiber surface, as indicated by the relative increase in their ToF-SIMS intensity. Application of the Incroquat Behenyl 18-MEA conditioner to both ,virgin' and bleached hair results in the adsorption of the cationic C18, C20, C22, and C21 surfactant components onto the hair surface. The ToF-SIMS data indicate higher levels of conditioner on the bleached hair relative to the undamaged hair. [source]


    Investigation of the postcure reaction and surface energy of epoxy resins using time-of-flight secondary ion mass spectrometry and contact-angle measurements

    JOURNAL OF APPLIED POLYMER SCIENCE, Issue 5 2009
    Firas Awaja
    Abstract Time-of-flight secondary ion mass spectrometry (ToF-SIMS) was used to investigate correlations between the molecular changes and postcuring reaction on the surface of a diglycidyl ether of bisphenol A and diglycidyl ether of bisphenol F based epoxy resin cured with two different amine-based hardeners. The aim of this work was to present a proof of concept that ToF-SIMS has the ability to provide information regarding the reaction steps, path, and mechanism for organic reactions in general and for epoxy resin curing and postcuring reactions in particular. Contact-angle measurements were taken for the cured and postcured epoxy resins to correlate changes in the surface energy with the molecular structure of the surface. Principal components analysis (PCA) of the ToF-SIMS positive spectra explained the variance in the molecular information, which was related to the resin curing and postcuring reactions with different hardeners and to the surface energy values. The first principal component captured information related to the chemical phenomena of the curing reaction path, branching, and network density based on changes in the relative ion density of the aliphatic hydrocarbon and the C7H7O+ positive ions. The second principal component captured information related to the difference in the surface energy, which was correlated to the difference in the relative intensity of the CxHyNz+ ions of the samples. PCA of the negative spectra provided insight into the extent of consumption of the hardener molecules in the curing and postcuring reactions of both systems based on the relative ion intensity of the nitrogen-containing negative ions and showed molecular correlations with the sample surface energy. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009 [source]


    Animal urine as painting materials in African rock art revealed by cluster ToF-SIMS mass spectrometry imaging

    JOURNAL OF MASS SPECTROMETRY (INCORP BIOLOGICAL MASS SPECTROMETRY), Issue 8 2010
    Vincent Mazel
    Abstract The rock art site at the village of Songo in Mali is a very important Dogon ritual place where, since the end of the nineteenth century until today, takes place the ceremony of circumcision. During these ceremonies, paintings are performed on the walls of the shelter with mainly three colors: red, black and white. Ethnological literature mentions the use of animal urine of different species such as birds, lizards or snakes as a white pigment. Urine of these animals is mainly composed of uric acid or urate salts. In this article, time-of-flight secondary ion mass spectrometry (ToF-SIMS) is used to compare uric acid, snake urine and a sample of a white pigment of a Dogon painting coming from the rock art site of Songo. ToF-SIMS measurements in both positive and negative ion modes on reference compounds and snake urine proved useful for the study of uric acid and urate salts. This method enables to identify unambiguously these compounds owing to the detection in negative ion mode of the ion corresponding to the deprotonated molecule ([M , H], at m/z 167.01) and its fragment ions. Moreover, the mass spectra obtained in positive ion mode permit to differentiate uric acid and urate salts on the basis of specific ions. Applying this method to the Dogon white pigments sample, we show that the sample is entirely composed of uric acid. This proves for the first time, that animal urine was used as a pigment by the Dogon. The presence of uric acid instead of urate salts as normally expected in animal urine could be explained by the preparation of the pigment for its application on the stone. Copyright © 2010 John Wiley & Sons, Ltd. [source]


    Direct analysis of lipids in mouse brain using electrospray droplet impact/SIMS

    JOURNAL OF MASS SPECTROMETRY (INCORP BIOLOGICAL MASS SPECTROMETRY), Issue 4 2010
    Daiki Asakawa
    Abstract Electrospray droplet impact (EDI)/secondary ion mass spectrometry (SIMS) is a new desorption/ionization technique for mass spectrometry in which highly charged water clusters produced from the atmospheric-pressure electrospray are accelerated in vacuum by 10 kV and impact the sample deposited on the metal substrate. EDI/SIMS was shown to enhance intact molecular ion formation dramatically compared to conventional SIMS. EDI/SIMS has been successfully applied to the analysis of mouse brain without any sample preparation. Five types of lipids, i.e. phosphatidylcholine (PC), phosphatidylserine, phosphatidylinositol (PI), galactocerebroside (GC) and sulfatide (ST), were readily detected from mouse brain section. In addition, by EDI/SIMS, six different regions of the mouse brain (cerebral cortex, corpus callosum, striatum, medulla oblongata, cerebellar cortex and cerebellar medulla) were examined. While GCs and STs were found to be rich in white matter, PIs were rich in gray matter. Copyright © 2010 John Wiley & Sons, Ltd. [source]


    In situ thermo-TOF-SIMS study of thermal decomposition of zinc acetate dihydrate

    JOURNAL OF MASS SPECTROMETRY (INCORP BIOLOGICAL MASS SPECTROMETRY), Issue 10 2004
    Anil Vithal Ghule
    Abstract Time-of-flight secondary ion mass spectrometry (TOF-SIMS) was used for an in situ thermal decomposition study of Zn(CH3COO)2·2H2O forming ZnO nanoparticles. TOF-SIMS spectra were recorded at regular temperature intervals of 25 °C in positive and negative detection modes in a dynamic thermal process. Controlled heating (5 °C min,1) of Zn(CH3COO)2·2H2O was also carried out using thermogravimetric analysis (TGA) in an oxygen atmosphere (20 ml min,1). Nearly spherical ZnO nanoparticles with no agglomeration and a narrow size distribution (diameter ,50 nm) were observed, which were characterized using scanning electron microscopy, transmission electron microscopy and x-ray diffraction. In situ thermo-TOF-SIMS was used to monitor the 64Zn+ and 66Zn+ ion abundances as a function of temperature, which showed a similar profile to that observed for weight loss in TGA during decomposition. Based on the experimental results, a possible decomposition mechanism for the formation of ZnO is proposed. Copyright © 2004 John Wiley & Sons, Ltd. [source]


    Investigation of ion-pair precipitates of selected alkoxylates and complex salts of specific metal cations by liquid secondary ion mass spectrometry

    JOURNAL OF MASS SPECTROMETRY (INCORP BIOLOGICAL MASS SPECTROMETRY), Issue 4 2002

    Abstract Liquid secondary ion (LSI) mass spectra of ion-pair precipitates obtained for Triton X-100 with strontium, lead, cadmium and mercury tetraphenylborates and for selected butoxylene,ethoxylene monoalkyl ethers with barium tetraiodobismuthate(III) are discussed. On the basis of LSI mass spectra, recorded in both positive and negative modes, the formulae of the ion-pair precipitates were determined. On the basis of B/E mass spectra, the fragmentation routes of [M , H + Ba]+ ions for butoxylene,ethoxylene monoalkyl ether complexes of barium and [M , H + Cd]+ ions for the Triton X-100 complex of cadmium are proposed. Copyright © 2002 John Wiley & Sons, Ltd. [source]


    Formation of cryptophanes from their precursors as viewed by liquid secondary ion mass spectrometry

    JOURNAL OF MASS SPECTROMETRY (INCORP BIOLOGICAL MASS SPECTROMETRY), Issue 10 2001
    Thierry Brotin
    Abstract The formation of cryptophane-A (C1) and the deuterated cryptophanes C2,C6 from their respective precursors P1,P6 in a mass spectrometer ion-source was evidenced by liquid secondary ion mass spectrometry (LSIMS). Mass-analyzed ion kinetic energy experiments performed on the precursor molecular ions suggested that cryptophane formation occurred mainly in the liquid-matrix before desorption rather than in the gas phase. In addition, we observed that the presence of cations, such as lithium or sodium ions, inhibited the formation of the cryptophane molecular ions. In the light of these results we used the LSIMS technique to investigate the formation of the new cryptophanes C7,C13. All the data collected support the idea that a direct comparison can be made between these experimental findings and chemistry in solution. Copyright © 2001 John Wiley & Sons, Ltd. [source]


    Characterization of dilute species within CVD-grown silicon nanowires doped using trimethylboron: protected lift-out specimen preparation for atom probe tomography

    JOURNAL OF MICROSCOPY, Issue 2 2010
    T. J. PROSA
    Summary Three-dimensional quantitative compositional analysis of nanowires is a challenge for standard techniques such as secondary ion mass spectrometry because of specimen size and geometry considerations; however, it is precisely the size and geometry of nanowires that makes them attractive candidates for analysis via atom probe tomography. The resulting boron composition of various trimethylboron vapour,liquid,solid grown silicon nanowires were measured both with time-of-flight secondary ion mass spectrometry and pulsed-laser atom probe tomography. Both characterization techniques yielded similar results for relative composition. Specialized specimen preparation for pulsed-laser atom probe tomography was utilized and is described in detail whereby individual silicon nanowires are first protected, then lifted out, trimmed, and finally wet etched to remove the protective layer for subsequent three-dimensional analysis. [source]


    Mass spectrometric and chemical stability of the Asp-Pro bond in herpes simplex virus epitope peptides compared with X-Pro bonds of related sequences

    JOURNAL OF PEPTIDE SCIENCE, Issue 8 2002
    Zsolt Skribanek
    Abstract The mass spectrometric analysis of the immunodominant epitope region (273,284) of herpes simplex virus type 1 (HSV-1) glycoprotein D (gD) showed a favoured fission at the Asp-Pro peptide bond. The fast atom bombardment collision induced dissociation (FAB-CID) study of closely related X-Pro peptides documented that neither the length nor the amino acid composition of the peptide has a significant influence on this preferential cleavage. At the same time the DP bond proved to be sensitive to acidic conditions in the course of peptide synthesis. These observations prompted us to compare the chemical and mass spectrometric stability of a new set of nonapeptides related to the 273,284 epitope region of gD, i.e. SALLEDPVG and SALLEXPVG peptides, where X = A, K, I, S, F, E or D, respectively. The chemical stability of these peptides during acidic hydrolysis was investigated by electrospray ionization mass spectrometry (ESI-MS) and the products were identified by ESI-MS and on-line high performance liquid chromatography,mass spectrometry (HPLC-MS). The mass spectrometric fragmentation and bond stability of the untreated peptide samples were also studied using ESI-MS and liquid secondary ion mass spectrometry (LSIMS). Both the chemical hydrolysis and the mass spectrometric fragmentation showed that the Asp-Pro bond could easily be cleaved, while the KP bond proved to be stable under both circumstances. On the other hand, the XP bond (X = A, I, S, F or E) fragmented easily under the mass spectrometric conditions, but was not sensitive to the acidolysis. Copyright © 2002 European Peptide Society and John Wiley & Sons, Ltd. [source]


    Synthesis and Characterization of Bulk, Vitreous Cadmium Germanium Arsenide

    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 6 2009
    Bradley R. Johnson
    Cadmium germanium diarsenide glasses were synthesized in bulk form (,2.4 cm3) using procedures adapted from the literature. Several issues involved in the fabrication and quenching of amorphous CdGexAs2 (x=0.45, 0.65, 0.85, and 1.00, where x is the molar ratio of Ge to 1 mol of Cd) are described. An innovative processing route is presented to enable fabrication of high-purity, vitreous, crack-free ingots with sizes up to 10 mm diameter, and 30,40 mm long. Specimens from selected ingots were characterized using thermal analysis, optical microscopy, scanning electron microscopy, energy dispersive spectroscopy, particle-induced X-ray emission, Rutherford backscattering, secondary ion mass spectrometry, X-ray diffraction, density, and optical spectroscopy. Variations in properties as a function of processing conditions and composition are described. Results show that the density of defect states in the middle of the band gap and near the band edges can be decreased three ways: through suitable control of the processing conditions, by doping the material with hydrogen, and by increasing the concentration of Ge in the glass. [source]


    Cluster secondary ion mass spectrometry of polymers and related materials,

    MASS SPECTROMETRY REVIEWS, Issue 2 2010
    Christine M. Mahoney
    Abstract Cluster secondary ion mass spectrometry (cluster SIMS) has played a critical role in the characterization of polymeric materials over the last decade, allowing for the ability to obtain spatially resolved surface and in-depth molecular information from many polymer systems. With the advent of new molecular sources such as , , , and , there are considerable increases in secondary ion signal as compared to more conventional atomic beams (Ar+, Cs+, or Ga+). In addition, compositional depth profiling in organic and polymeric systems is now feasible, without the rapid signal decay that is typically observed under atomic bombardment. The premise behind the success of cluster SIMS is that compared to atomic beams, polyatomic beams tend to cause surface-localized damage with rapid sputter removal rates, resulting in a system at equilibrium, where the damage created is rapidly removed before it can accumulate. Though this may be partly true, there are actually much more complex chemistries occurring under polyatomic bombardment of organic and polymeric materials, which need to be considered and discussed to better understand and define the important parameters for successful depth profiling. The following presents a review of the current literature on polymer analysis using cluster beams. This review will focus on the surface and in-depth characterization of polymer samples with cluster sources, but will also discuss the characterization of other relevant organic materials, and basic polymer radiation chemistry. © 2009 Wiley Periodicals, Inc., Mass Spec Rev 29:247,293, 2010 [source]


    Fragmentations of (M,H), anions of underivatised peptides.

    MASS SPECTROMETRY REVIEWS, Issue 1 2009
    Part 2: Characteristic cleavages of Ser, of disulfides, other post-translational modifications, together with some unusual internal processes
    Abstract In a previous review (Bowie, Brinkworth, & Dua (2002); Mass Spectrom Rev 21:87,107) we described the characteristic backbone cleavages and side chain fragmentations which occur from (M,H), parent anions of underivatized peptides. This work is briefly summarized in the present review. Cys was not described in the previous review: here we describe the Cys characteristic side chain loss of H2S, together with its , backbone cleavage. These processes are compared with those of the related Ser. All experimental observations are backed up with theoretical studies at the HF/6-31G(d)//AM1 level of theory, a level of theory which we have shown gives good geometries and acceptable relative energies. The negative ion cleavages of a number of post-translational modifications are described. Negative ion mass spectrometry is the method of choice for identification of disulfides in both peptides and proteins. Intramolecular disulfides are identified by the presence of the fragment anion [(M,H),,H2S2], and CID MS2 of this fragment normally identifies the positions of the two Cys residues and often the full sequence of the peptide. An unsymmetrically substituted intermolecular disulfide can give up to eight characteristic fragment anions, and CID MS2 of some, or all of these often provides the full sequence of those peptides which form the initial intermolecular disulfide linkage. Negative ion cleavages of disulfides are the most energetically favored of all peptide negative cleavages studied to date. Negative ion mass spectrometry is also valuable for the identification of pyroglutamates, sulfates and phosphates. Finally, some unusual fragmentations are described which involve cyclization/elimination reactions which require the decomposing (M,H), parent anions to adopt the same helical conformation that these peptides have in solution. © 2008 Wiley Periodicals, Inc., Mass Spec Rev 28:20,34, 2009 [source]


    Nitrogen-isotopic compositions of IIIE iron meteorites

    METEORITICS & PLANETARY SCIENCE, Issue 4 2000
    N. SUGIURA
    A total of six IIIE iron meteorites have been analyzed for C and N using secondary ion mass spectrometry, and three of these have also been analyzed for N, Ne, and Ar by stepped combustion. We show that these groups cannot be resolved on the basis of N abundances or isotopic compositions but that they are marginally different in C-isotopic composition and nitride occurrence. Cosmic-ray exposure age distributions of the IIIE and IIIAB iron meteorites seem to be significantly different. There is a significant N-isotopic range among the IIIE iron meteorites. A negative correlation between ,15N and N concentration suggests that the increase in s,15N resulted from diffusional loss of N. [source]


    Phosphorus incorporation and activity in (100)-oriented homoepitaxial diamond layers

    PHYSICA STATUS SOLIDI (A) APPLICATIONS AND MATERIALS SCIENCE, Issue 9 2009
    G. Frangieh
    Abstract In this work, we present a study about the homoepitaxial growth of phosphorus-doped diamond on (100) substrates. The growth was performed by microwave plasma assisted chemical vapor deposition (MPCVD) adding an organic precursor for phosphorus (tertiarybutylphosphine: TBP) in the gaseous phase. We show that phosphorus is incorporated in (100) chemical vapor deposition (CVD) diamond as proved by secondary ion mass spectrometry (SIMS). The recombination of excitons bound to phosphorus donors is observed by cathodoluminescence (CL) spectroscopy. The influence of the growth parameters on the phosphorus donor activity is investigated. We show that the [C*]/[H2] ratio is a key parameter for controlling the P-donor activity when diamond is grown on (100) surfaces. [source]


    Cathodoluminescence as a tool to determine the phosphorus concentration in diamond

    PHYSICA STATUS SOLIDI (A) APPLICATIONS AND MATERIALS SCIENCE, Issue 9 2007
    J. Barjon
    Abstract In n-type diamond doped with phosphorus, exciton properties have been investigated by cathodoluminescence as a function of the phosphorus concentration. A series of homoepitaxial diamond layers were grown by microwave plasma-assisted chemical vapor deposition and doped with a liquid organic precursor of phosphorus (tertiarybutylphosphine). Their phosphorus concentration ranges from 5.2 × 1016 cm,3 to 3.3 × 1018 cm,3 as measured by secondary ion mass spectrometry. It is shown that the ratio between the luminescence intensities of the neutral phosphorus-bound exciton and the free exciton recombinations follows the donor concentration. A calibration graph is presented to determine the phosphorus contents in diamond with cathodoluminescence spectroscopy at 102 K. The influence of electrical compensation on the optical spectra is discussed. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]