Iodide Staining (iodide + staining)

Distribution by Scientific Domains

Kinds of Iodide Staining

  • propidium iodide staining
  • v iodide staining


  • Selected Abstracts


    Sodium dodecyl sulfate-capillary gel electrophoresis of polyethylene glycolylated interferon alpha

    ELECTROPHORESIS, Issue 3 2004
    Dong H. Na
    Abstract Sodium dodecyl sulfate-capillary gel electrophoresis (SDS-CGE) using a hydrophilic replaceable polymer network matrix was applied to characterize the polyethylene glycol(PEG)ylated interferon alpha (PEG-IFN). The SDS-CGE method resulted in a clearer resolution in both the PEG-IFN species and the native IFN species. The distribution profile of PEGylation determined by SDS-CGE was consistent with that obtained by SDS-polyacrylamide gel electrophoresis (PAGE) with Coomassie blue or barium iodide staining. The result was also compared using matrix-assisted laser desorption/ionization-time of flight-mass spectrometry. SDS-CGE was also useful for monitoring the PEGylation reaction to optimize the reaction conditions, such as reaction molar ratio. This study shows the potential of SDS-CGE as a new method for characterizing the PEGylated proteins with advantages of speed, minimal sample consumption and high resolution. [source]


    Development and clinical application of nucleated red blood cell counting and staging on the automated haematology analyser XE-2100TM

    INTERNATIONAL JOURNAL OF LABORATORY HEMATOLOGY, Issue 1 2003
    F.-S. Wang
    Summary We initially developed a new flow cytometric (FCM) reference method for the enumeration and staging of nucleated red blood cells (NRBC) in 1997 [Wang et al., 1998 (XIth International Symposium on Technological Innovations in Laboratory Haematology, Banff, Canada, 1998); Tsuji et al., 1999 (Cytometry, 1999)]. The method used CD45 antibody and propidium iodide staining to separate NRBCs from other cells. Accuracy and precision were enhanced because larger numbers of cells were counted than was possible with the manual method. We also developed a method for automated NRBC counting on a haematology analyser, the XE-2100 (Wang, 1988). NRBC were separated from other cells using a special lysing buffer and a fluorescent dye. The XE-2100 was found to detect peripheral and cord blood NRBC accurately and precisely when compared with cell morphology or FCM control methods. The FCM NRBC staging method was established through the identification of different NRBC populations following the novel staining and lysing method. To evaluate the method further, we sorted samples containing NRBCs using a FACSort and investigated NRBC staging on the Sysmex XE-2100TM based on the cell sorting results. Data were analysed using special software (ida). First, we used the data in various parameter combinations. We then established gates to classify the NRBC populations. Finally, we analysed blood specimens from patients with different types of diseases to explore possible clinical applications. [source]


    Neuroprotective effects of atorvastatin against glutamate-induced excitotoxicity in primary cortical neurones

    JOURNAL OF NEUROCHEMISTRY, Issue 6 2005
    Julian Bösel
    Abstract Statins [3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors] exert cholesterol-independent pleiotropic effects that include anti-thrombotic, anti-inflammatory, and anti-oxidative properties. Here, we examined direct protective effects of atorvastatin on neurones in different cell damage models in vitro. Primary cortical neurones were pre-treated with atorvastatin and then exposed to (i) glutamate, (ii) oxygen,glucose deprivation or (iii) several apoptosis-inducing compounds. Atorvastatin significantly protected from glutamate-induced excitotoxicity as evidenced by propidium iodide staining, nuclear morphology, release of lactate dehydrogenase, and mitochondrial tetrazolium metabolism, but not from oxygen,glucose deprivation or apoptotic cell death. This anti-excitototoxic effect was evident with 2,4 days pre-treatment but not with daily administration or shorter-term pre-treatment. The protective properties occurred independently of 3-hydroxy-3-methylglutaryl-CoA reductase inhibition because co-treatment with mevalonate or other isoprenoids did not reverse or attenuate neuroprotection. Atorvastatin attenuated the glutamate-induced increase of intracellular calcium, which was associated with a modulation of NMDA receptor function. Taken together, atorvastatin exerts specific anti-excitotoxic effects independent of 3-hydroxy-3-methylglutaryl-CoA reductase inhibition, which has potential therapeutic implications. [source]


    Cytotoxicity evaluation of enzyme inhibitors and absorption enhancers in Caco-2 cells for oral delivery of salmon calcitonin

    JOURNAL OF PHARMACEUTICAL SCIENCES, Issue 4 2004
    Rakhi B. Shah
    Abstract The usefulness of enzyme inhibitors and absorption enhancers with least mucosal cell cytotoxicity was evaluated on Caco-2 cell monolayers. The temporal cytotoxicity of several protease inhibitors at 500 ,g/mL (e.g., turkey and chicken ovomucoids, aprotinin, and Protease Inhibitor Cocktail) and absorption enhancers [e.g., cholate (3%), glycocholate (3%), glycosursodeoxycholate (3%), ethylenediaminetetraacetic acid (EDTA, 0.1%), hydroxypropyl-,-cyclodextrin (HP-,-CD, 5%), hydroxypropyl-,-cylcodextrin (HP-,-CD, 5%), ,-cylcodextrin (,-CD, 5%), tetradecyl-,- D -maltoside (0.25%), octylglucoside (0.25%), citric acid (10%), glycyrrhetinic acid (0.34 mM), and Tween-80® (0.1%)] was measured by monitoring their effect on Caco-2 cell viability. Cell viability was measured by mannitol permeability measurements, transepithelial electrical resistance (TEER) measurements, DNA-propidium iodide staining assay, and WST-1 assay (tetrazolium salt based assay). Sodium dodecyl sulfate (0.1%), a potent surfactant, was used as a positive control. Chicken and turkey ovomucoids were nontoxic to cells as evaluated by all the methods used. Aprotinin decreased the TEER, whereas plasma membrane damage was seen with Protease Inhibitor Cocktail after a 24-h period. With respect to the absorption enhancers, the toxicity increased directly as a result of an increase in the time of incubation. The enhancers EDTA and HP-,-CD can be used safely for a short period of time, whereas glycosursodeoxycholate, glycyrrhetinic acid, octylglucoside, HP-,-CD, and ,-CD can be used for a longer period. © 2004 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 93: 1070,1082, 2004 [source]


    Effects of Ethanol on Mouse Embryonic Stem Cells

    ALCOHOLISM, Issue 12 2009
    Alla Arzumanyan
    Background:, Fetal alcohol syndrome (FAS) reflects a constellation of congenital abnormalities caused by excess maternal consumption of alcohol. It is likely that interference with embryonic development plays a role in the pathogenesis of the disorder. Ethanol-induced apoptosis has been suggested as a causal factor in the genesis of FAS. Mouse embryonic stem (mES) cells are pluripotent cells that differentiate in vitro to cell aggregates termed embryoid bodies (EBs), wherein differentiation capacity and gene expression profile are similar to those of the early embryo. Methods:, To investigate the effects of ethanol during differentiation, mES cells were cultured on a gelatin surface in the presence of leukemia inhibitory factor which maintains adherent undifferentiated cells or in suspension to promote formation of EBs. All cells were treated (1,6 days) with 80 mM ethanol. The pluripotency and differentiation of mES cells were evaluated by western blotting of stage-specific embryonic antigen (SSEA-1), transcription factors Oct-3/4, Sox-2, and Nanog, using alkaline phosphatase staining. Apoptosis (early to late stages) was assessed by fluorescence-activated cell sorting using TdT-mediated biotin,dUTP nick-end labelling assay and fluorescein isothiocyanate-Annexin V/propidium iodide staining. Results:, Ethanol increased apoptosis during in vitro differentiation of mES cells to EBs, whereas undifferentiated cells were not affected. Ethanol exposure also interfered with pluripotency marker patterns causing an upregulation of SSEA-1 under self-renewal conditions. In EBs, ethanol delayed the downregulation of SSEA-1 and affected the regulation of transcription factors during differentiation. Conclusion:, Our findings suggest that ethanol may contribute to the pathogenesis of FAS by triggering apoptotic pathways during differentiation of embryonic stem cells and deregulating early stages of embryogenesis. [source]


    CC531s colon carcinoma cells induce apoptosis in rat hepatic endothelial cells by the Fas/FasL-mediated pathway

    LIVER INTERNATIONAL, Issue 4 2003
    Katrien Vekemans
    Abstract The mechanisms involved in colorectal carcinoma with liver metastasis are not well known. Metastasizing colon carcinoma cells express more FasL than primary colon carcinoma cells and cancer cells induce apoptosis in hepatocytes by the Fas/FasL pathway. Therefore, this study focused on Fas/FasL expression and functionality in rat liver sinusoidal endothelial cells (LSECs) and CC531s colon carcinoma cells in vitro and in vivo. RT-PCR and immunochemistry revealed Fas and FasL in LSECs and CC531s, respectively. Functionality of Fas was assessed in vitro by incubation with human recombinant FasL (1,100 ng/ml) with or without enhancer. At concentrations of 10 and 100 ng/ml with enhancer, respectively 21% and 44% of endothelial cells showed signs of apoptosis using Hoechst 33342/propidium iodide staining and electron microscopy. In co-cultures, apoptosis could be detected in endothelial cells neighboring the CC531s and could be inhibited by an antagonistic FasL antibody. Moreover, 18 h after mesenteric injection of CC531s, the sinusoidal endothelium revealed disruption. In conclusion, (i) CC531s cells induce apoptosis in LSECs in vitro by using Fas/FasL; (ii) CC531s cells damage the sinusoidal endothelial lining in vivo; and (iii) this might provide FasL-positive tumor cells a gateway towards the hepatocytes. [source]


    Pharmacological doses of dietary curcumin increase colon epithelial cell proliferation in vivo in rats

    PHYTOTHERAPY RESEARCH, Issue 10 2007
    Sylvia Jeewon Kim
    Abstract Although curcumin has preventive actions in animal models of colon cancer, whether the mechanism of action is through anti-proliferation in normal environment is not clearly understood. Here, we studied the effects of chemopreventive doses of curcumin on the proliferation rate of colon epithelial cells (CEC), using a recently developed stable isotope , mass spectrometric method for measuring DNA synthesis rate. Adult male F344 rats were given diets containing 0, 2 and 4% curcumin for 5 weeks. 4% 2H2O was given in drinking water to label DNA, after a priming bolus, for 4 days prior to sacrifice. The isotopic enrichment of the deoxyribose moiety of deoxyadenosine from DNA was measured by gas chromatography , mass spectrometry. Cell cycle analysis was performed after propidium iodide staining of CECs. Curcumin administration did not reduce but instead resulted in dose-dependent increases in CEC proliferation rate (p < 0.05) for 2% and 4% curcumin vs 0%). The length of the colon crypts and the fraction of cells in S-phase were also increased in the 2% and 4% curcumin groups (p < 0.05). Thus, pharmacological doses of curcumin increase CEC proliferation rate and pool size in normal rats. Reduction of CEC proliferation therefore cannot explain the proposed chemopreventive actions of curcumin in colon cancer. Copyright © 2007 John Wiley & Sons, Ltd. [source]


    Cell Subpopulation-related Volumetric Parameters: a Complementary Tool of the Modified Hypo-osmotic Swelling Test on Model of Boar Spermatozoa

    REPRODUCTION IN DOMESTIC ANIMALS, Issue 5 2000
    A. Petrounkina
    Content It is a general property of the intact animal cell to swell rapidly in response to hypo-osmotic conditions. The modified hypo-osmotic swelling test (HOS-test) is an indicative test to evaluate the integrity of the plasma membrane by means of an electronic cell counter, based on the relative increase of the cell volume in response to hypo-osmotic conditions. In this study the relationships between the osmotically induced changes of the cell volume of boar spermatozoa as determined by cell counter and the integrity of the membrane as determined by propidium iodide staining (PI) were studied. Boar sperm cell volume distributions were measured under iso-osmotic (300 mosmolar) conditions and after a hypo-osmotic stress (150 mosmolar). The relative volume shift of mean and modal volume were calculated as a proportion coefficient of modal and mean values of the cell volume distributions by transition from iso-osmotic to hypo-osmotic conditions. The volumetric parameters related to the different cell subpopulations were derived from the different peaks of cell volume distributions. PI-staining techniques were used for comparison. The values of the volume shift and of derived percentages of the osmotically inactive cells were correlated negatively and positively, respectively (p < 0.05) with the percentage of the PI-stained cells. This correlation indicates that a relationship exists between membrane functions of the different cell compartments (sperm head and tail) due to the circumstance that the increase of the cell volume in the HOS-test is associated with the morphological changes in the tail and the PI-staining is associated with the membrane integrity and permeability of the head region. The advantage of computer-assisted volume measurement is that a large number of cells (5000,50 000 spermatozoa) can be measured and evaluated during one procedure and in a very short time. The relative volume shift is a quantitative continuous parameter characterizing the osmotic reactivity and membrane functional competence of a cell population and of subpopulations within one ejaculate. This parameter could be useful to evaluate membrane functional competence rapidly and sensitively. Inhalt Es ist eine generelle Eigenschaft membranintakter tierischer Zellen, mit einer Volumenzunahme auf eine hypoosmotische Belastung zu reagieren. Der auf der relativen Vergrößierungdes Zellvolumens basierende modifizierte hypoosmotischeSchwelltest ist ein indikativer Test zur Beurteilung der Membranintegrität mittels eines elektronischen Partikelzählers. In dieser Studie wurden die Zusammenhänge zwischen der mittels der Propidiumjodid-Färbung bestimmten Zellmembranintegrität und den osmotisch induzierten Veränderungen des Zellvolumens von Eberspermien untersucht. Volumenverteilungen von Eberspermien wurden unter isoosmotischen (300 mosmolar) und hypoosmotischen (150 mosmolar) Bedingungen gemessen. Die relative Volumenverschiebung der modalen und mittleren Werte der Volumenverteilung wurde als Quotient aus Modalwerten der Zellvolumenverteilungen und des mittleren Zellvolumens beim Übergang von isotonen zu hypotonen Bedingungen berechnet. Die auf verschiedene Subpopulationen bezogenen volumetrischen Parameter werden aus den originalen Volumenverteilungen berechnet. Der Betrag der Zellvolumenzunahme und die aus den Volumenverteilungen bestimmten Anteile an Zellen mit beschädigter Geißielmembran korrelierten signifikant negativ bzw. positiv (p < 0,05) mit dem Anteil an den Zellen mit beschädigter Kopfmembran, der sich aus der Propidiumjodid-Färbung ergab. Es wird geschlossen, daßi im Verhalten zwischen den Membranen der verschiedenen Zellkompartimente (Spermienkopf und-Geißiel) ein Zusammenhang besteht. Die beschriebene Methode ermöglicht die Analyse großier Zellpopulationen (5.000,50.000 Zellen). Die relative Volumenverschiebung stellt einen quantitativen kontinuierlichen Parameter dar, der den Membranzustand der Eberspermien einer Spermatozoenpopulation und Subpopulationen innerhalb eines Ejakulates charakterisiert. Diese Parameter können zur schnellen und sensitiven Beurteilung der Membranzustandes eingesetzt werden. [source]


    A retrovirus-based system to stably silence GDF-8 expression and enhance myogenic differentiation in human rhabdomyosarcoma cells

    THE JOURNAL OF GENE MEDICINE, Issue 8 2008
    Zhuo Yang
    Abstract Background Myostatin, also called GDF-8, a secreted growth and differentiating factor that belongs to the transforming growth factor-, superfamily, is a known negative regulator of myogenesis in vivo. Overexpression of GDF-8 contributes to the lack of differentiation in human rhabdomyosarcoma (RMS) cells. We investigated whether a retrovirus-based RNA interference (RNAi) system against GDF-8 expression in human RMS cells would enhance myogenic differentiation. Methods A retrovirus-based RNAi system was developed that utilized the U6-RNA polymerase III promoter to drive efficient expression and deliver the GDF8-specific short hairpin RNAs (shRNAs) in human RMS cell A204. In this system, the retrovirus vector was integrated into the host cell genome and allowed stable expression of shRNAs. GDF-8 expression was determined by real-time polymerase chain reaction and western blotting analysis. An 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was performed to determine the cell proliferation. Myogenic differentiation markers were monitored by western blotting analysis. Cell cycle and apoptosis was determined by propidium iodide staining and analysed in a flow cytometer. Results In the siGDF8 A204 cell pools, the levels of both GDF-8 mRNA and protein were dramatically reduced by this RNAi system. In differentiation conditions, inhibition of myostatin synthesis led to enhanced cell cycle withdrawal, consequently stimulated myogenic differentiation and increased the rate of tumor cell apoptosis. Conclusions The results demonstrate that deactivation of myostatin by using retrovirus-based RNAi thus may be useful for therapy in rhabdomyosarcomas. Copyright © 2008 John Wiley & Sons, Ltd. [source]


    Vitamin E succinate inhibits NF-,B and prevents the development of a metastatic phenotype in prostate cancer cells: Implications for chemoprevention

    THE PROSTATE, Issue 6 2007
    Paul L. Crispen
    Abstract BACKGROUND NF-,B and AP-1 transcriptional factors contribute to the development and progression of prostate malignancy by regulating the expression of genes involved in proliferation, apoptosis, angiogenesis, and metastasis. METHODS NF-,B and AP-1 activities were examined by TransAm assay. Cytokines levels were assessed by ELISA. ICAM-1 and gp130 expression was examined by flow cytometry. Cell adhesion was examined by the ability of cells to adhere to fibronectin-coated plates. Cell viability was determined by propidium iodide staining. RESULTS Treatment with ,-tocopherol succinate (VES) inhibits NF-,B but augments AP-1 activity, reduces expression of IL-6, IL-8, and VEGF, suppresses cell adhesion, ICAM-1 and gp130 expression in androgen-independent PC-3, DU-145, and CA-HPV-10 cells. VES supplementation also decreases the expression of anti-apoptotic XIAP and Bcl-XL proteins and sensitizes androgen-dependent LNCaP cells to androgen deprivation. CONCLUSIONS Our findings propose a potential mechanism of VES-mediated anti-tumor activity and support the role of vitamin E analogs as potential chemopreventative agents against prostate cancer. Prostate 67: 582,590, 2007. © 2007 Wiley-Liss, Inc. [source]


    Antisense MDM2 oligonucleotides restore the apoptotic response of prostate cancer cells to androgen deprivation,

    THE PROSTATE, Issue 3 2004
    Zhaomei Mu
    Abstract BACKGROUND Early in the malignant transformation of prostate epithelial cells, the apoptotic response to androgen deprivation (AD) is lost and the principle response is a slowing of cell growth. In this study, we tested whether interruption of MDM2 function using antisense MDM2 oligonucleotide (AS) affects the apoptotic response of prostate cancer cells to AD. METHODS Wild type LNCaP cells and MDM2-overexpressing (LNCaP-MST) cells were treated with AS alone or in combination with AD. Protein levels of MDM2, p53, and p21 were determined by Western blotting. Cell viability was measure by trypan blue staining. Apoptotic cell death was confirmed by cell morphological changes, annexin V/propidium iodide staining and caspase-3,+,7 activity. Overall cell survival was quantified by clonogenic assay. RESULTS AS inhibited MDM2 expression to a greater extent in LNCaP cells, as compared to LNCaP-MST cells. AS enhanced the expression of p53 and p21 in both cell lines. The growth inhibitory and cell death effects of AS,+,AD were generally greater than AS alone in LNCaP cells. Treatment of LNCaP cells with AS,+,AD for 72 hr caused a significant increase in cell death (66%) over AD alone (13%), AS alone (33%), or AD,+,AS,+,R1881 (34% with synthetic androgen replacement) that was attributable mainly to apoptosis. Clonogenic survival reflected the same pattern. CONCLUSIONS Our results suggest that the apoptotic response of prostate cancer to AD is strongly influenced by MDM2 expression. Antisense MDM2 has broad potential as a therapeutic agent to sensitize prostate cancer cells to AD therapy by enhancing apoptotic cell death. © 2004 Wiley-Liss, Inc. [source]


    Imatinib mesylate reduces production of extracellular matrix and prevents development of experimental dermal fibrosis

    ARTHRITIS & RHEUMATISM, Issue 1 2007
    Jörg H. W. Distler
    Objective Imatinib mesylate is a clinically well-tolerated small molecule inhibitor that exerts selective, dual inhibition of the transforming growth factor , (TGF,) and platelet-derived growth factor (PDGF) pathways. This study was undertaken to test the potential use of imatinib mesylate as an antifibrotic drug for the treatment of dermal fibrosis in systemic sclerosis (SSc). Methods The expression of extracellular matrix (ECM) proteins in SSc and normal dermal fibroblasts was analyzed by real-time polymerase chain reaction, Western blot, and Sircol collagen assay. Proliferation capacity was assessed with the MTT assay. Cell viability was analyzed by mitochondrial membrane potential and by annexin V/propidium iodide staining. Bleomycin-induced experimental dermal fibrosis was used to assess the antifibrotic effects of imatinib mesylate in vivo. Results Imatinib mesylate efficiently reduced basal synthesis of COL1A1, COL1A2, and fibronectin 1 messenger RNA in SSc and normal dermal fibroblasts, in a dose-dependent manner. The induction of ECM proteins after stimulation with TGF, and PDGF was also strongly and dose-dependently inhibited by imatinib mesylate. These results were confirmed at the protein level. Imatinib mesylate did not alter proliferation or induce apoptosis and necrosis in dermal fibroblasts. Consistent with the in vitro findings, imatinib mesylate reduced dermal thickness, the number of myofibroblasts, and synthesis of ECM proteins in experimental dermal fibrosis, without evidence of toxic side effects. Conclusion These data show that imatinib mesylate at biologically relevant concentrations has potent antifibrotic effects in vitro and in vivo, without toxic side effects. Considering its favorable pharmacokinetics and clinical experience with its use in other diseases, imatinib mesylate is a promising candidate for the treatment of fibrotic diseases such as SSc. [source]


    Human lactoferrin stimulates skin keratinocyte function and wound re-epithelialization

    BRITISH JOURNAL OF DERMATOLOGY, Issue 1 2010
    L. Tang
    Summary Background, Human lactoferrin (hLF), a member of the transferrin family, is known for its antimicrobial and anti-inflammatory effects. Recent studies on various nonskin cell lines indicate that hLF may have a stimulatory effect on cell proliferation. Objectives, To study the potential role of hLF in wound re-epithelialization. Materials and methods, The effects of hLF on cell growth, migration, attachment and survival were assessed, with a rice-derived recombinant hLF (holo-rhLF), using proliferation analysis, scratch migration assay, calcein-AM/propidium iodide staining and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling (TUNEL) method, respectively. The mechanisms of hLF on cell proliferation and migration were explored using specific pathway inhibitors. The involvement of lactoferrin receptor low-density lipoprotein receptor-related protein 1 (LRP1) was examined with RNA interference technique. An in vivo swine second-degree burn wound model was also used to assess wound re-epithelialization. Results, Studies revealed that holo-rhLF significantly stimulated keratinocyte proliferation which could be blocked by mitogen-activated protein kinase (MAPK) kinase 1 inhibitor. Holo-rhLF also showed strong promoting effects on keratinocyte migration, which could be blocked by either inhibition of the MAPK, Src and Rho/ROCK pathways, or downregulation of the LRP1 receptor. With cells under starving or 12- O -tetradecanoylphorbol-13-acetate exposure, the addition of holo-rhLF was found greatly to increase cell viability and inhibit cell apoptosis. Additionally, holo-rhLF significantly increased the rate of wound re-epithelialization in swine second-degree burn wounds. Conclusions, Our studies demonstrate the direct effects of holo-rhLF on wound re-epithelialization including the enhancement of keratinocyte proliferation and migration as well as the protection of cells from apoptosis. The data strongly indicate its potential therapeutic applications in wound healing. [source]


    Histone deacetylase inhibitors trichostatin A and valproic acid circumvent apoptosis in human leukemic cells expressing the RUNX1 chimera

    CANCER SCIENCE, Issue 2 2008
    Ko Sasaki
    Disturbance of the normal functions of wild-type RUNX1 resulting from chromosomal translocations or gene mutations is one of the major molecular mechanisms in human leukemogenesis. RUNX1-related chimeras generated by the chromosomal translocations repress transcriptional activity of wild-type RUNX1 by recruiting the co-repressor/histone deacetylase complex. Thus, histone deacetylase inhibitors are expected to restore normal functions of wild-type RUNX1 and thereby affect the growth and differentiation ability of leukemic cells expressing the chimera. We investigated the in vitro effects of histone deacetylase inhibitors, trichostatin A and valproic acid, on human leukemic cell lines such as SKNO-1 and Kasumi-1 expressing RUNX1/ETO, Reh expressing TEL/RUNX1 and SKH-1 co-expressing RUNX1/EVI1 and BCR/ABL. We also employed K562 cells expressing BCR/ABL without such a chimera as a control. Treatment with each inhibitor increased acetylated histone 4 in all of these cell lines. Interestingly, proliferation of SKNO-1, Kasumi-1, SKH-1 and Reh cells was significantly suppressed after 3-day culture with trichostatin A or valproic acid, when compared to that of K562 cells. We observed cell cycle arrest and apoptotic induction in the RUNX1 chimera-expressing cells by the propidium iodide staining. Up- and downregulation of cell cycle regulator genes appeared to be the molecular basis for the former, and activation of both extrinsic and intrinsic apoptotic caspases for the latter. We propose histone deacetylase inhibitors to be an attractive choice in the molecular targeting therapy of RUNX1-related leukemia. (Cancer Sci 2008; 99: 414,422) [source]


    Differential modulation of innate immune cell functions by the Burkholderia cepacia complex: Burkholderia cenocepacia but not Burkholderia multivorans disrupts maturation and induces necrosis in human dendritic cells

    CELLULAR MICROBIOLOGY, Issue 10 2008
    Kelly L. MacDonald
    Summary Burkholderia cepacia complex (BCC) bacteria cause pulmonary infections that can evolve into fatal overwhelming septicemia in chronic granulomatous disease or cystic fibrosis patients. Burkholderia cenocepacia and Burkholderia multivorans are responsible for the majority of BCC infections in cystic fibrosis patients, but B. cenocepacia is generally associated with a poorer prognosis than B. multivorans. The present study investigated whether these pathogens could modulate the normal functions of primary human monocyte-derived dendritic cells (DCs), important phagocytic cells that act as critical orchestrators of the immune response. Effects of the bacteria on maturation of DCs were determined using flow cytometry. DCs co-incubated for 24 h with B. cenocepacia, but not B. multivorans, had reduced expression of costimulatory molecules when compared with standard BCC lipopolysaccharide-matured DCs. B. cenocepacia, but not B. multivorans, also induced necrosis in DCs after 24 h, as determined by annexin V and propidium iodide staining. DC necrosis only occurred after phagocytosis of live B. cenocepacia; DCs exposed to heat-killed bacteria, bacterial supernatant or those pre-treated with cytochalasin D then exposed to live bacteria remained viable. The ability of B. cenocepacia to interfere with normal DC maturation and induce necrosis may contribute to its pathogenicity in susceptible hosts. [source]


    Airway smooth muscle proliferation and survival is not modulated by mast cells

    CLINICAL & EXPERIMENTAL ALLERGY, Issue 2 2010
    D. Kaur
    Summary Background Airway smooth muscle (ASM) hyperplasia and mast cell localization within the ASM bundle are important features of asthma. The cause of this increased ASM mass is uncertain and whether it is a consequence of ASM,mast cell interactions is unknown. Objective We sought to investigate ASM proliferation and survival in asthma and the effects of co-culture with mast cells. Methods Primary ASM cultures were derived from 11 subjects with asthma and 12 non-asthmatic controls. ASM cells were cultured for up to 10 days in the presence or absence of serum either alone or in co-culture with the human mast cell line-1, unstimulated human lung mast cells (HLMC) or IgE/anti-IgE-activated HLMC. Proliferation was assessed by cell counts, CFSE assay and thymidine incorporation. Apoptosis and necrosis were analysed by Annexin V/propidium iodide staining using flow cytometry and by assessment of nuclear morphology using immunofluorescence. Mast cell activation was confirmed by the measurement of histamine release. Results Using a number of techniques, we found that ASM proliferation and survival was not significantly different between cells derived from subjects with or without asthma. Co-culture with mast cells did not affect the rate of proliferation or survival of ASM cells. Conclusion Our findings do not support a role for increased airway smooth proliferation and survival as the major mechanism driving ASM hyperplasia in asthma. Cite this as: D. Kaur, F. Hollins, R. Saunders, L. Woodman, A. Sutcliffe, G. Cruse, P. Bradding and C. Brightling, Clinical & Experimental Allergy, 2010 (40) 279, 288. [source]