Hypothermic Machine Perfusion (hypothermic + machine_perfusion)

Distribution by Scientific Domains


Selected Abstracts


Hypothermic Machine Preservation in Human Liver Transplantation: The First Clinical Series

AMERICAN JOURNAL OF TRANSPLANTATION, Issue 2 2010
J. V. Guarrera
Hypothermic machine perfusion (HMP) is widely used to preserve kidneys for transplantation with improved results over cold storage (CS). To date, successful transplantation of livers preserved with HMP has been reported only in animal models. In this, the first prospective liver HMP study, 20 adults received HMP-preserved livers and were compared to a matched group transplanted with CS livers. HMP was performed for 3,7 h using centrifugal perfusion with Vasosol® solution at 4,6°C. There were no cases of primary nonfunction in either group. Early allograft dysfunction rates were 5% in the HMP group versus 25% in controls (p = 0.08). At 12 months, there were two deaths in each group, all unrelated to preservation or graft function. There were no vascular complications in HMP livers. Two biliary complications were observed in HMP livers compared with four in the CS group. Serum injury markers were significantly lower in the HMP group. Mean hospital stay was shorter in the HMP group (10.9 ± 4.7 days vs. 15.3 ± 4.9 days in the CS group, p = 0.006). HMP of donor livers provided safe and reliable preservation in this pilot case-controlled series. Further multicenter HMP trials are now warranted. [source]


Inhibition of TXA2 synthesis with OKY-046 improves liver preservation by prolonged hypothermic machine perfusion in rats

JOURNAL OF GASTROENTEROLOGY AND HEPATOLOGY, Issue 7pt2 2008
Hongzhi Xu
Abstract Background and Aim:, We previously reported that hypothermic machine perfusion (HMP) for liver preservation is feasible, but hepatic microcirculatory dysfunction and significant liver damage remain major obstacles in its application when the preservation is extended to 24 h. The underlying injury mechanism is not well understood. The present study sought to investigate the role of thromboxane A2 (TXA2) in the pathogenesis of liver injury after prolonged HMP. Methods:, Livers isolated from Sprague,Dawley rats were subjected to continuous machine perfusion with University of Wisconsin (UW) solution at a flow rate of 0.4 mL/min/g liver at 4°C for 24 h. A specific TXA2 synthase inhibitor, OKY-046 (OKY), was added to UW solution during the preservation period and to the Krebs,Henseleit buffer during reperfusion. The performance of the livers after preservation was evaluated using an isolated liver perfusion system with Krebs,Henseleit buffer at a flow rate of 15 mL/min at 37°C for 30 min. Results:, Prolonged HMP induced a significant release of TXA2 into the portal circulation as indicated by markedly increased levels of TXB2 in the perfusate during reperfusion (at 30 min, 1447.4 ± 163.6 pg/mL vs 50.91 ± 6.7 pg/mL for control). Inhibition of TXA2 synthesis with OKY significantly decreased releases of TXA2 (69.8 ± 13.4 pg/mL) concomitant with reduced lactate dehydrogenase (LDH) releases (at 30 min, HMP + OKY: 144.9 ± 27.9 U/L; HMP: 369.3 ± 68.5 U/L; simple cold storage or SCS: 884.4 ± 80.3 U/L), decreased liver wet/dry weight ratio (HMP + OKY vs SCS and HMP: 3.6 ± 0.3 vs 4.4 ± 0.1 and 3.9 ± 0.2, respectively) and increased hyaluronic acid uptake (at 30 min, HMP + OKY vs SCS, HMP: 33.1 ± 2.9% vs 13.9 ± 3.6%, 18.6 ± 2.4%, respectively). Liver histology also showed significant improvement in tissue edema and hepatocellular necrosis with OKY compared with HMP without OKY. Conclusion:, The results demonstrate that TXA2 is involved in the development of hepatocellular injury induced by HMP, and inhibition of TXA2 synthesis during preservation and reperfusion protects liver hepatocytes and sinusoidal endothelial cells from injuries caused by prolonged HMP. [source]


Donation after Cardiac Death Kidneys with Low Severity Pre-Arrest Acute Renal Failure

AMERICAN JOURNAL OF TRANSPLANTATION, Issue 3 2007
S. Sohrabi
The widening gap between supply and demand for renal transplantation has prompted many centers to use donors after cardiac death. Some of these donors exhibit signs of acute renal failure (ARF) prior to cardiac arrest. Concern has been expressed about poor quality of graft function from such donors. In response to this perception, we reviewed 49 single renal transplant recipients from category III donors after cardiac death between 1998 and 2005, at out center. All kidneys but one had hypothermic machine perfusion and viability testing prior to transplantation. According to the RIFLE criteria, nine recipients had kidneys from donors with "low severity pre-arrest ARF". The remainder of the recipients were used as control group. There was no statistical significant difference in delayed graft function and rejection rates between these two groups. Recipients GFR at 12 months was 44.4 ± 17.1 and 45.2 ± 14.7 (mL/min/1.73m2) from donors with ARF and without ARF, respectively (p = 0.96). In conclusion, low severity ARF in kidneys from controlled after cardiac death donors can be a reversible condition after transplantation. Short-term results are comparable to the kidneys from same category donors without renal failure, providing that some form of viability assessment is implemented prior to transplantation. [source]


An In Vivo Autotransplant Model of Renal Preservation: Cold Storage Versus Machine Perfusion in the Prevention of Ischemia/Reperfusion Injury

ARTIFICIAL ORGANS, Issue 7 2009
Gaetano La Manna
Abstract There is increasing proof that organ preservation by machine perfusion is able to limit ischemia/reperfusion injury in kidney transplantation. This study was designed to compare the efficiency in hypothermic organ preservation by machine perfusion or cold storage in an animal model of kidney autotransplantation. Twelve pigs underwent left nephrectomy after warm ischemic time; the organs were preserved in machine perfusion (n = 6) or cold storage (n = 6) and then autotransplanted with immediate contralateral nephrectomy. The following parameters were compared between the two groups of animals: hematological and urine indexes of renal function, blood/gas analysis values, histological features, tissue adenosine-5,-triphosphate (ATP) content, perforin gene expression in kidney biopsies, and organ weight changes were compared before and after preservation. The amount of cellular ATP was significantly higher in organs preserved by machine perfusion; moreover, the study of apoptosis induction revealed an enhanced perforin expression in the kidneys, which underwent simple hypothermic preservation compared to the machine-preserved ones. Organ weight was significantly decreased after cold storage, but it remained quite stable for machine-perfused kidneys. The present model seems to suggest that organ preservation by hypothermic machine perfusion is able to better control cellular impairment in comparison with cold storage. [source]