Hydroxynitrile Lyase (hydroxynitrile + lyase)

Distribution by Scientific Domains

Selected Abstracts

A New (R)-Hydroxynitrile Lyase from Prunus mume: Asymmetric Synthesis of Cyanohydrins.

CHEMINFORM, Issue 6 2006
Samik Nanda
Abstract For Abstract see ChemInform Abstract in Full Text. [source]

Potential active-site residues in polyneuridine aldehyde esterase, a central enzyme of indole alkaloid biosynthesis, by modelling and site-directed mutagenesis

FEBS JOURNAL, Issue 12 2002
Emine Mattern-Dogru
In the biosynthesis of the antiarrhythmic alkaloid ajmaline, polyneuridine aldehyde esterase (PNAE) catalyses a central reaction by transforming polyneuridine aldehyde into epi-vellosimine, which is the immediate precursor for the synthesis of the ajmalane skeleton. The PNAE cDNA was previously heterologously expressed in E. coli. Sequence alignments indicated that PNAE has a 43% identity to a hydroxynitrile lyase from Hevea brasiliensis, which is a member of the ,/, hydrolase superfamily. The catalytic triad, which is typical for this family, is conserved. By site-directed mutagenesis, the members of the catalytic triad were identified. For further detection of the active residues, a model of PNAE was constructed based on the X-ray crystallographic structure of hydroxynitrile lyase. The potential active site residues were selected on this model, and were mutated in order to better understand the relationship of PNAE with the ,/, hydrolases, and as well its mechanism of action. The results showed that PNAE is a novel member of the ,/, hydrolase enzyme superfamily. [source]

Synthesis of Aliphatic (S)-,-Hydroxycarboxylic Amides using a One-Pot Bienzymatic Cascade of Immobilised Oxynitrilase and Nitrile Hydratase

Sander van Pelt
Abstract A one-pot bienzymatic cascade combining a hydroxynitrile lyase (Manihot esculenta, E.C. and a nitrile hydratase (Nitriliruptor alkaliphilus, E.C. for the synthesis of enantiopure aliphatic ,-hydroxycarboxylic amides from aldehydes is described. Both enzymes were immobilised as cross-linked enzyme aggregates (CLEAs). Stability tests show that the nitrile hydratase CLEAs are sensitive to water-immiscible organic solvents as well as to aldehydes and hydrogen cyanide (HCN), but are remarkably stable and show useful activity in acidic aqueous environments of pH,4,5. The cascade reactions are consequently carried out by using a portionwise feed of HCN and moderate concentrations of aldehyde in acidic aqueous buffer to suppress the uncatalysed hydrocyanation background reaction. After optimisation, this method was used to synthesise five different kinds of aliphatic ,-hydroxycarboxylic amides from the corresponding aldehydes with good yields and with enantiomeric purities comparable to those obtained for the ,-hydroxynitriles in the microaqueous hydrocyanation using hydroxynitrile lyase and an excess of HCN. [source]

The active site of hydroxynitrile lyase from Prunus amygdalus: Modeling studies provide new insights into the mechanism of cyanogenesis

Ingrid Dreveny
Abstract The FAD-dependent hydroxynitrile lyase from almond (Prunus amygdalus, PaHNL) catalyzes the cleavage of R -mandelonitrile into benzaldehyde and hydrocyanic acid. Catalysis of the reverse reaction,the enantiospecific formation of ,-hydroxynitriles,is now widely utilized in organic syntheses as one of the few industrially relevant examples of enzyme-mediated C,C bond formation. Starting from the recently determined X-ray crystal structure, systematic docking calculations with the natural substrate were used to locate the active site of the enzyme and to identify amino acid residues involved in substrate binding and catalysis. Analysis of the modeled substrate complexes supports an enzymatic mechanism that includes the flavin cofactor as a mere "spectator" of the reaction and relies on general acid/base catalysis by the conserved His-497. Stabilization of the negative charge of the cyanide ion is accomplished by a pronounced positive electrostatic potential at the binding site. PaHNL activity requires the FAD cofactor to be bound in its oxidized form, and calculations of the pKa of enzyme-bound HCN showed that the observed inactivation upon cofactor reduction is largely caused by the reversal of the electrostatic potential within the active site. The suggested mechanism closely resembles the one proposed for the FAD-independent, and structurally unrelated HNL from Hevea brasiliensis. Although the actual amino acid residues involved in the catalytic cycle are completely different in the two enzymes, a common motif for the mechanism of cyanogenesis (general acid/base catalysis plus electrostatic stabilization of the cyanide ion) becomes evident. [source]