Hydroxymethyl Groups (hydroxymethyl + groups)

Distribution by Scientific Domains


Selected Abstracts


Cyclopropanecarbaldehyde with Two Protected Hydroxymethyl Groups.

CHEMINFORM, Issue 50 2007
B. A. Baimashev
Abstract ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 200 leading journals. To access a ChemInform Abstract, please click on HTML or PDF. [source]


DFT conformational studies of ,-maltotriose,

JOURNAL OF COMPUTATIONAL CHEMISTRY, Issue 7 2008
Udo Schnupf
Abstract Recent DFT optimization studies on ,-maltose improved our understanding of the preferred conformations of ,-maltose. The present study extends these studies to ,-maltotriose with three ,- D -glucopyranose residues linked by two ,-[1,4] bridges, denoted herein as DP-3's. Combinations of gg, gt, and tg hydroxymethyl groups are included for both "c" and "r" hydroxyl rotamers. When the hydroxymethyl groups are for example, gg-gg-gg, and the hydroxyl groups are rotated from all clockwise, "c", to all counterclockwise, "r", the minimum energy positions of the bridging dihedral angles (,H and ,H) move from the region of conformational space of (,, ,), relative to (0, 0), to a new position defined by (+, +). Further, it was found previously that the relative energies of ,-maltose gg-gg-c and "r" conformations were very close to one another; however, the DP-3's relative energies between hydroxyl "c" or "r" rotamers differ by more than one kcal/mol, in favor of the "c" form, even though the lowest energy DP-3 conformations have glycosidic dihedral angles similar to those found in the ,-maltose study. Preliminary solvation studies using COSMO, a dielectric solvation method, point to important solvent contributions that reverse the energy profiles, showing an energy preference for the "r" forms. Only structures in which the rings are in the chair conformation are presented here. 2007 Wiley Periodicals, Inc. J Comput Chem, 2008 [source]


Synthesis and degradation of biomedical materials based on linear and star shaped polyglycidols

JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 13 2009
Helmut Keul
Abstract Linear and star shaped polyglycidols (synonym with polyglycerols) are prepared in a controlled ring opening polymerization of protected glycidols. Beside the molar mass and the polydispersity, the architecture of the polyglycidols is controlled by using mono- and multifunctional mono- and polydispers initiators. Copolymers of dissimilarly protected glycidols as well as copolymers with nonfunctional oxiranes were prepared by means of anionic polymerization while copolymers of protected glycidol with tetrahydrofuran were prepared by means of cationic polymerization. Polyethers with functional groups in the side chains (functional polyethers) with special emphasis on polyglycidols (containing hydroxymethyl groups in the side chains) were used to prepare multifunctional polymers and (hetero)grafted polymer brushes via chemical and enzyme catalyzed reaction. The potential of poly(glycidol- graft -,-caprolactone)- co -glycidol) prepared via enzyme catalyzed grafting of polyglycidols using ,-caprolactone as a monomer and Lipase B from Candida antarctica as a catalyst is presented. Finally, comparative degradation studies of densely and loosely grafted polyglycidols are presented and discussed. 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3209,3231, 2009 [source]


Synthesis of amphiphilic copolymer brushes: Poly(ethylene oxide)-graft-polystyrene

JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 15 2006
Zhongyu Li
Abstract A well-defined amphiphilic copolymer brush with poly(ethylene oxide) as the main chain and polystyrene as the side chain was successfully prepared by a combination of anionic polymerization and atom transfer radical polymerization (ATRP). The glycidol was first protected by ethyl vinyl ether to form 2,3-epoxypropyl-1-ethoxyethyl ether and then copolymerized with ethylene oxide by the initiation of a mixture of diphenylmethylpotassium and triethylene glycol to give the well-defined polymer poly(ethylene oxide- co -2,3-epoxypropyl-1-ethoxyethyl ether); the latter was hydrolyzed under acidic conditions, and then the recovered copolymer of ethylene oxide and glycidol {poly(ethylene oxide- co -glycidol) [poly(EO- co -Gly)]} with multiple pending hydroxymethyl groups was esterified with 2-bromoisobutyryl bromide to produce the macro-ATRP initiator [poly(EO- co -Gly)(ATRP). The latter was used to initiate the polymerization of styrene to form the amphiphilic copolymer brushes. The object products and intermediates were characterized with 1H NMR, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, Fourier transform infrared, and size exclusion chromatography in detail. In all cases, the molecular weight distribution of the copolymer brushes was rather narrow (weight-average molecular weight/number-average molecular weight < 1.2), and the linear dependence of ln[M0]/[M] (where [M0] is the initial monomer concentration and [M] is the monomer concentration at a certain time) on time demonstrated that the styrene polymerization was well controlled. This method has universal significance for the preparation of copolymer brushes with hydrophilic poly(ethylene oxide) as the main chain. 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4361,4371, 2006 [source]