Hydrostatic Pressure Gradient (hydrostatic + pressure_gradient)

Distribution by Scientific Domains


Selected Abstracts


Algorithm for determining optimum sequestration depth of CO2 trapped by residual gas and solubility trapping mechanisms in a deep saline formation

GEOFLUIDS (ELECTRONIC), Issue 4 2008
C. K. LIN
Abstract An algorithm is proposed here for determining the optimum sequestration depth (in terms of depth corresponding to maximum net income per unit rock volume) in a saline formation for CO2 trapped by residual gas and solubility trapping mechanisms. The Peng,Robinson equation of state was used to determine the density and fugacity of sequestered CO2 and the compression energy required for CO2 injection. Geochemist's Workbench®, a commercial geochemical software package, was used to estimate CO2 solubility in groundwater. Operational costs and CO2 emissions due to compression energy consumption were estimated. A hypothetical reference case was constructed to illustrate the proposed algorithm, assuming constant values of geothermal gradient, hydrostatic pressure gradient, sweep efficiency and initial groundwater chemistry, with a depth-dependent porosity and porosity-dependent saturation of residual gas. In general, the algorithm was illustrated successfully for the hypothetical reference case and produced the following results. The depth corresponding to maximum trapping capacity was approximately 3000 m, but the depth representing maximum net income was approximately 1300 m. CO2 emissions due to compression energy consumption per unit mass of CO2 sequestration cannot be ignored, but may be <0.15, even down to a depth of 7000 m. Both the trapping capacity and net income of CO2 sequestration decreased with geothermal gradient, but the corresponding optimum depths increased with geothermal gradient. [source]


Brain edema in liver failure: Basic physiologic principles and management

LIVER TRANSPLANTATION, Issue 11 2002
Fin Stolze Larsen MD
In patients with severe liver failure, brain edema is a frequent and serious complication that may result in high intracranial pressure and brain damage. This short article focuses on basic physiologic principles that determine water flux across the blood-brain barrier. Using the Starling equation, it is evident that both the osmotic and hydrostatic pressure gradients are imbalanced across the blood-brain barrier in patients with acute liver failure. This combination will tend to favor cerebral capillary water influx to the brain. In contrast, the disequilibration of the Starling forces seems to be less pronounced in patients with cirrhosis because the regulation of cerebral blood flow is preserved and the arterial ammonia concentration is lower compared with that of patients with acute liver failure. Treatments that are known to reverse high intracranial pressure tend to decrease the osmotic pressure gradients across the blood-brain barrier. Recent studies indicate that interventions that restrict cerebral blood flow, such as hyperventilation, hypothermia, and indomethacin, are also efficient in preventing edema and high intracranial pressure, probably by decreasing the transcapillary hydrostatic pressure gradient. In our opinion, it is important to recall that rational fluid therapy, adequate ventilation, and temperature control are of direct importance to controlling cerebral capillary water flux in patients with acute liver failure. These simple interventions should be secured before more advanced experimental technologies are instituted to treat these patients. [source]


IMAGING LUNG AERATION AND LUNG LIQUID CLEARANCE AT BIRTH USING PHASE CONTRAST X-RAY IMAGING

CLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, Issue 1 2009
Stuart B Hooper
SUMMARY 1The transition to extra-uterine life at birth is critically dependent on airway liquid clearance to allow the entry of air and the onset of gaseous ventilation. We have used phase contrast X-ray imaging to identify factors that regulate lung aeration at birth in spontaneously breathing term and mechanically ventilated preterm rabbit pups. 2Phase contrast X-ray imaging exploits the difference in refractive index between air and water to enhance image contrast, enabling the smallest air-filled structures of the lung (alveoli; < 100 µm) to be resolved. Using this technique, the lungs become visible as they aerate, allowing the air,liquid interface to be observed as it moves distally during lung aeration. 3Spontaneously breathing term rabbit pups rapidly aerate their lungs, with most fully recruiting their functional residual capacity (FRC) within the first few breaths. The increase in FRC occurs mainly during individual breaths, demonstrating that airway liquid clearance and lung aeration is closely associated with inspiration. We suggest that transpulmonary pressures generated by inspiration provide a hydrostatic pressure gradient for the movement of water out of the airways and into the surrounding lung tissue after birth. 4In mechanically ventilated preterm pups, lung aeration is closely associated with lung inflation and a positive end-expiratory pressure is required to generate and maintain FRC after birth. 5In summary, phase contrast X-ray imaging can image the air-filled lung with high temporal and spatial resolution and is ideal for identifying factors that regulate lung aeration at birth in both spontaneously breathing term and mechanically ventilated preterm neonates. [source]


Brain edema in liver failure: Basic physiologic principles and management

LIVER TRANSPLANTATION, Issue 11 2002
Fin Stolze Larsen MD
In patients with severe liver failure, brain edema is a frequent and serious complication that may result in high intracranial pressure and brain damage. This short article focuses on basic physiologic principles that determine water flux across the blood-brain barrier. Using the Starling equation, it is evident that both the osmotic and hydrostatic pressure gradients are imbalanced across the blood-brain barrier in patients with acute liver failure. This combination will tend to favor cerebral capillary water influx to the brain. In contrast, the disequilibration of the Starling forces seems to be less pronounced in patients with cirrhosis because the regulation of cerebral blood flow is preserved and the arterial ammonia concentration is lower compared with that of patients with acute liver failure. Treatments that are known to reverse high intracranial pressure tend to decrease the osmotic pressure gradients across the blood-brain barrier. Recent studies indicate that interventions that restrict cerebral blood flow, such as hyperventilation, hypothermia, and indomethacin, are also efficient in preventing edema and high intracranial pressure, probably by decreasing the transcapillary hydrostatic pressure gradient. In our opinion, it is important to recall that rational fluid therapy, adequate ventilation, and temperature control are of direct importance to controlling cerebral capillary water flux in patients with acute liver failure. These simple interventions should be secured before more advanced experimental technologies are instituted to treat these patients. [source]