Hydroponic Culture (hydroponic + culture)

Distribution by Scientific Domains


Selected Abstracts


Cadmium Enhances Generation of Hydrogen Peroxide and Amplifies Activities of Catalase, Peroxidases and Superoxide Dismutase in Maize

JOURNAL OF AGRONOMY AND CROP SCIENCE, Issue 1 2008
P. Kumar
Abstract Maize (Zea mays L. cv. 777) plants grown in hydroponic culture were treated with 50 ,m CdSO4. Growth and metabolic parameters indicative of oxidative stress and antioxidant responses were studied in leaves of plants treated with Cd. Apart from increasing lipid peroxidation and H2O2 accumulation, supply of Cd suppressed growth, fresh and dry mass of plants and decreased the concentrations of chloroplastic pigments. The activities of catalase (CAT; EC 1.11.1.6), peroxidase (POD; EC 1.11.1.7), ascorbate peroxidase (APX; EC 1.11.1.11) and superoxide dismutase (SOD; EC 1.15.1.1) were increased in plants supplied 50 ,m Cd. Localization of activities of isoforms of these enzymes (POD, APX and SOD) on native gels also revealed increase in the intensities of pre-existing bands. Stimulated activities of CAT, POD, APX and SOD in maize plants supplied excess Cd do not appear to have relieved plants from excessive generation of reactive oxygen species (ROS). It is, therefore, concluded that supply of 50 ,m Cd induces oxidative stress by increasing production of ROS despite increased antioxidant protection in maize plants. [source]


Excess nickel,induced changes in antioxidative processes in maize leaves

JOURNAL OF PLANT NUTRITION AND SOIL SCIENCE, Issue 6 2007
Praveen Kumar
Abstract Maize (Zea mays L. cv. 777) plants grown in hydroponic culture were treated with 100 µM NiSO4 (moderate nickel (Ni) excess). In addition to growth parameters, metabolic parameters representative of antioxidant responses in leaves were assessed 24 h and 3, 7, and 14 d after initiating the Ni treatment. Extent of oxidative damage was measured as accumulation of malondialdehyde and hydrogen peroxide in leaves 7 and 14 d after treatment initiation. Apart from increasing membrane-lipid peroxidation and H2O2 accumulation, excess supply of Ni suppressed plant growth and dry mass of shoots but increased dry mass of roots and decreased the concentrations of chloroplastic pigments. Excess supply of Ni, though inhibited the catalase (EC 1.11.1.6) activity, increased peroxidase (EC 1.11.1.7), ascorbate peroxidase (EC 1.11.1.11), and superoxide dismutase (EC 1.15.1.1) activities. Localization of isoforms of these enzymes (peroxidase, ascorbate peroxidase, and superoxide dismutase) on native gels also revealed increases in the intensities of pre-existing bands. Enhanced activities of peroxidase, ascorbate peroxidase, and superoxide dismutase, however, did not appear to be sufficient to ameliorate the effects of excessively generated reactive oxygen species due to excess supply of Ni. [source]


A convenient and versatile hydroponic cultivation system for Arabidopsis thaliana

PHYSIOLOGIA PLANTARUM, Issue 3 2004
Hanna Norén
A versatile two-step cultivation procedure for Arabidopsis thaliana is described for the production of large quantities of leaf material suitable for biochemical and biophysical analysis. The first step comprises a miniature greenhouse made out of a plastic pipette box to grow the seedlings to the six-leaf stage. For continued growth, the seedlings are transferred to hydroponic cultivation using an opaque container covered by a styrofoam lid. Transfer of the small seedlings to hydroponic culture is facilitated by growth in separate pipette tips, which protects vulnerable roots from damage. The hydroponic cultivation system is easy to scale-up and produces large amounts of relatively large leaves and roots. This hydroponic system produces enough plant material to make Arabidopsis a feasible model for biochemical and biophysical experiments, which can be combined with the available genetic information to address various aspects of plant functional genomics. [source]


Differences in efficient metabolite management and nutrient metabolic regulation between wild and cultivated barley grown at high salinity

PLANT BIOLOGY, Issue 4 2010
Sabah Yousfi
Abstract Physiological and biochemical responses of Hordeum maritimum and H. vulgare to salt stress were studied over a 60-h period. Growth at increasing salinity levels (0, 100, 200 and 300 mM NaCl) was assessed in hydroponic culture. H. maritimum was shown to be a true halophyte via its typical behaviour at high salinity. Shoot growth of cultivated barley was gradually reduced with increasing salinity, whereas that of wild barley was enhanced at 100 and 200 mm NaCl then slightly reduced at 300 mM NaCl. The higher salt tolerance of H. maritimum as compared to H. vulgare was due to its higher capacity to maintain cell turgor under severe salinity. Furthermore, H. maritimum exhibited fine regulation of Na+ transport from roots to shoots and, unlike H. vulgare, it accumulated less Na+ in shoots than in roots. In addition, H. maritimum can accumulate more Na+ than K+ in both roots and shoots without the appearance of toxicity symptoms, indicating that Na+ was well compartmentalized within cells and substituted K+ in osmotic adjustment. The higher degree of salt tolerance of H. maritimum is further demonstrated by its economic strategy: at moderate salt treatment (100 mm NaCl), it used inorganic solutes (such as Na+) for osmotic adjustment and kept organic solutes and a large part of the K+ for metabolic activities. Indeed, K+ use efficiency in H. maritimum was about twofold that in H. vulgare; the former started to use organic solutes as osmotica only at high salinity (200 and 300 mm NaCl). These results suggest that the differences in salt tolerance between H. maritimum and H. vulgare are partly due to (i) differences in control of Na+ transport from roots to shoots, and (ii) H. maritimum uses Na+ as an osmoticum instead of K+ and organic solutes. These factors are differently reflected in growth. [source]


Elevated carbon dioxide increases nitrate uptake and nitrate reductase activity when tobacco is growing on nitrate, but increases ammonium uptake and inhibits nitrate reductase activity when tobacco is growing on ammonium nitrate

PLANT CELL & ENVIRONMENT, Issue 11 2001
P. Matt
Abstract The influence of elevated [CO2] on the uptake and assimilation of nitrate and ammonium was investigated by growing tobacco plants in hydroponic culture with 2 mm nitrate or 1 mm ammonium nitrate and ambient or 800 p.p.m. [CO2]. Leaves and roots were harvested at several times during the diurnal cycle to investigate the levels of the transcripts for a high-affinity nitrate transporter (NRT2), nitrate reductase (NIA), cytosolic and plastidic glutamine synthetase (GLN1, GLN2), the activity of NIA and glutamine synthetase, the rate of 15N-nitrate and 15N-ammonium uptake, and the levels of nitrate, ammonium, amino acids, 2-oxoglutarate and carbohydrates. (i) In source leaves of plants growing on 2 mm nitrate in ambient [CO2], NIA transcript is high at the end of the night and NIA activity increases three-fold after illumination. The rate of nitrate reduction during the first part of the light period is two-fold higher than the rate of nitrate uptake and exceeds the rate of ammonium metabolism in the glutamate: oxoglutarate aminotransferase (GOGAT) pathway, resulting in a rapid decrease of nitrate and the accumulation of ammonium, glutamine and the photorespiratory intermediates glycine and serine. This imbalance is reversed later in the diurnal cycle. The level of the NIA transcript falls dramatically after illumination, and NIA activity and the rate of nitrate reduction decline during the second part of the light period and are low at night. NRT2 transcript increases during the day and remains high for the first part of the night and nitrate uptake remains high in the second part of the light period and decreases by only 30% at night. The nitrate absorbed at night is used to replenish the leaf nitrate pool. GLN2 transcript and glutamine synthetase activity rise to a maximum at the end of the day and decline only gradually after darkening, and ammonium and amino acids decrease during the night. (ii) In plants growing on ammonium nitrate, about 30% of the nitrogen is derived from ammonium. More ammonium accumulates in leaves during the day, and glutamine synthetase activity and glutamine levels remain high through the night. There is a corresponding 30% inhibition of nitrate uptake, a decrease of the absolute nitrate level, and a 15,30% decrease of NIA activity in the leaves and roots. The diurnal changes of leaf nitrate and the absolute level and diurnal changes of the NIA transcript are, however, similar to those in nitrate-grown plants. (iii) Plants growing on nitrate adjust to elevated [CO2] by a coordinate change in the diurnal regulation of NRT2 and NIA, which allows maximum rates of nitrate uptake and maximum NIA activity to be maintained for a larger part of the 24 h diurnal cycle. In contrast, tobacco growing on ammonium nitrate adjusts by selectively increasing the rate of ammonium uptake, and decreasing the expression of NRT2 and NIA and the rate of nitrate assimilation. In both conditions, the overall rate of inorganic nitrogen utilization is increased in elevated [CO2] due to higher rates of uptake and assimilation at the end of the day and during the night, and amino acids are maintained at levels that are comparable to or even higher than in ambient [CO2]. (iv) Comparison of the diurnal changes of transcripts, enzyme activities and metabolite pools across the four growth conditions reveals that these complex diurnal changes are due to transcriptional and post-transcriptional mechanisms, which act several steps and are triggered by various signals depending on the condition and organ. The results indicate that nitrate and ammonium uptake and root NIA activity may be regulated by the sugar supply, that ammonium uptake and assimilation inhibit nitrate uptake and root NIA activity, that the balance between the influx and utilization of nitrate plays a key role in the diurnal changes of the NIA transcript in leaves, that changes of glutamine do not play a key role in transcriptional regulation of NIA in leaves but instead inhibit NIA activity via uncharacterized post-transcriptional or post-translational mechanisms, and that high ammonium acts via uncharacterized post-transcriptional or post-translational mechanisms to stabilize glutamine synthetase activity during the night. [source]


Short-term effects of salt stress on antioxidant systems and leaf water relations of pea leaves

PHYSIOLOGIA PLANTARUM, Issue 2 2002
José A. Hernández
In pea (Pisum sativum L.) plants the effect of short-term salt stress and recovery on growth, water relations and the activity of some antioxidant enzymes was studied. Leaf growth was interrupted by salt addition. However, during recovery, growth was restored, although there was a delay in returning to control levels. Salt stress brought about a decrease in osmotic potential and in stomatal conductance, but at 48 h and 24 h post-stress, respectively, both parameters recovered control values. In pea leaves, a linear increase in the Na+ concentration was observed in salt treated plants. In the recovered plants, a slight reduction in the Na+ concentration was observed, probably due to a dilution effect since the plant growth was restored and the total Na+ content was maintined in leaves after the stress period. A significant increase of SOD activity occurred after 48 h of stress and after 8 h of the recovery period (53% and 42%, respectively), and it reached control values at 24 h post-stress. APX activity did not change during the stress period, and after only 8 h post-stress it was increased by 48% with respect to control leaves. GR showed a 71% increase after 24 h of salt stress and also a significant increase was observed in the recovered plants. A strong increase of TBARS was observed after 8 h of stress (180% increase), but then a rapid decrease was observed during the stress period. Surprisingly, TBARS again increased at 8 h post-stress (78% increase), suggesting that plants could perceive the elimination of NaCl from the hydroponic cultures as another stress during the first hours of recovery. These results suggest that short-term NaCl stress produces reversible effects on growth, leaf water relations and on SOD and APX activities. This work also suggests that both during the first hours of imposition of stress and during the first hours of recovery an oxidative stress was produced. [source]