Hydrophobic Interaction Chromatography (hydrophobic + interaction_chromatography)

Distribution by Scientific Domains


Selected Abstracts


Investigation into the effect of detergents on disinfectant susceptibility of attached Escherichia coli and Listeria monocytogenes

JOURNAL OF APPLIED MICROBIOLOGY, Issue 1 2008
J.T. Walton
Abstract Aims:, Investigate the effect of detergent treatment on susceptibility of attached Escherichia coli and Listeria monocytogenes to subsequent disinfectant treatment. Methods and Results:, Plate counts show that E. coli attached to stainless steel surfaces became significantly more susceptible to benzalkonium chloride (BAC) after treatment with sodium alkyl sulfate (SAS) and fatty alcohol ethoxylate (FAE). No change in susceptibility was observed with Sodium dodecyl sulfate (SDS). L. monocytogenes became significantly less susceptible to BAC after treatment with SAS and SDS yet no change in susceptibility was observed with FAE. Flow cytometry using the fluoresceine propidium iodide revealed significant increases in cell membrane permeability of both organisms by SAS and FAE, although the effect was much greater in E. coli. No change was observed with SDS. Hydrophobic interaction chromatography showed that both organisms became less hydrophobic following treatment with SAS and SDS but FAE had no effect. Conclusions:, In E. coli, detergents that increase susceptibility to BAC increase membrane permeability. In L. monocytogenes, detergents that reduce susceptibility to BAC lower cell surface hydrophobicity. Significance and Impact of the Study:, Detergents can influence the sensitivity of pathogenic food borne micro-organisms to BAC. [source]


New approaches for predicting protein retention time in hydrophobic interaction chromatography,

JOURNAL OF MOLECULAR RECOGNITION, Issue 4 2006
M. E. Lienqueo
Abstract Hydrophobic interaction chromatography (HIC) is an important technique for the purification of proteins. In this paper, we review three different approaches for predicting protein retention time in HIC, based either on a protein's structure or on its amino-acidic composition, and we have extended one of these approaches. The first approach correlates the protein retention time in HIC with the protein average surface hydrophobicity. This methodology is based on the protein three-dimensional structure data and considers the hydrophobic contribution of the exposed amino acid residues as a weighted average. The second approach, which we have extended, is based on the high correlation level between the average surface hydrophobicity of a protein's hydrophobic interacting zone and its retention time in HIC. Finally, a third approach carries out a prediction of the average surface hydrophobicity of a protein, using only its amino-acidic composition, without knowing its three-dimensional structure. These models would make it possible to test different operating conditions for the purification of a target protein by computer simulations, and thus make it easier to select the optimal conditions, contributing to the rational design and optimization of the process. Copyright © 2006 John Wiley & Sons, Ltd. [source]


Hydrophobic interaction chromatography in dual salt system increases protein binding capacity

BIOTECHNOLOGY & BIOENGINEERING, Issue 5 2009
Anna M. Senczuk
Abstract Hydrophobic interaction chromatography (HIC) uses weakly hydrophobic resins and requires a salting-out salt to promote protein,resin interaction. The salting-out effects increase with protein and salt concentration. Dynamic binding capacity (DBC) is dependent on the binding constant, as well as on the flow characteristics during sample loading. DBC increases with the salt concentration but decreases with increasing flow rate. Dynamic and operational binding capacity have a major raw material cost/processing time impact on commercial scale production of monoclonal antibodies. In order to maximize DBC the highest salt concentration without causing precipitation is used. We report here a novel method to maintain protein solubility while increasing the DBC by using a combination of two salting-out salts (referred to as dual salt). In a series of experiments, we explored the dynamic capacity of a HIC resin (TosoBioscience Butyl 650M) with combinations of salts. Using a model antibody, we developed a system allowing us to increase the dynamic capacity up to twofold using the dual salt system over traditional, single salt system. We also investigated the application of this novel approach to several other proteins and salt combinations, and noted a similar protein solubility and DBC increase. The observed increase in DBC in the dual salt system was maintained at different linear flow rates and did not impact selectivity. Biotechnol. Bioeng. 2009;103: 930,935. © 2009 Wiley Periodicals, Inc. [source]


Retinol binding protein isolated from acute renal failure patients inhibits polymorphonuclear leucocyte functions

EUROPEAN JOURNAL OF CLINICAL INVESTIGATION, Issue 11 2004
G. Cohen
Abstract Background, Protein factors accumulating in sera of patients with end-stage renal disease (ESRD) that interfere with the nonspecific immune response by inhibiting essential functions of polymorphonuclear leucocytes (PMNLs) have previously been described. No such factor has been isolated from acute renal failure (ARF) patients to date. Materials and methods, Using a three-step chromatographic procedure involving ion exchange, size exclusion and hydrophobic interaction chromatography we purified the apo- and holo-form of retinol binding protein (RBP) from high-flux dialyser (polyacrylonitrile; AN69) ultrafiltrates of patients with ARF. Their effect on the chemotaxis of PMNLs isolated from healthy donors was determined by the under-agarose method. Whole-blood assays applying flow cytometry were used to assess phagocytosis and the oxidative metabolism of PMNLs. Apoptosis was assessed by determining the DNA content using propidium iodide. Results, Isolated apo- and holo-forms of RBP were truncated on their C-terminus as determined by mass spectrometry. All isolates significantly inhibited the chemotactic movement of PMNLs obtained from healthy donors and the PMNL oxidative metabolism stimulated by E. coli. These effects were concentration dependent. Retinol binding protein had no influence on the PMNL oxidative metabolism stimulated by PMA and on PMNL phagocytosis. Commercially available RBP isolated from urine influenced PMNL functions in the same way. Inhibition of p38 mitogen-activated protein kinase (MAPK) by SB203580 significantly attenuated the phagocytosis-induced respiratory burst and RBP did not lead to a further decrease. Polymorphonuclear leucocyte apoptosis was significantly inhibited by RBP. Conclusions, The apo- and holo-forms of RBP isolated from the ultrafiltrate of ARF patients inhibit PMNL chemotaxis, oxidative metabolism and apoptosis. Therefore, RBP may be considered a uraemic toxin contributing to a disturbed immune defence. [source]


Properties of pyranose dehydrogenase purified from the litter-degrading fungus Agaricus xanthoderma

FEBS JOURNAL, Issue 3 2007
Magdalena Kujawa
We purified an extracellular pyranose dehydrogenase (PDH) from the basidiomycete fungus Agaricus xanthoderma using ammonium sulfate fractionation and ion-exchange and hydrophobic interaction chromatography. The native enzyme is a monomeric glycoprotein (5% carbohydrate) containing a covalently bound FAD as its prosthetic group. The PDH polypeptide consists of 575 amino acids and has a molecular mass of 65 400 Da as determined by MALDI MS. On the basis of the primary structure of the mature protein, PDH is a member of the glucose,methanol,choline oxidoreductase family. We constructed a homology model of PDH using the 3D structure of glucose oxidase from Aspergillus niger as a template. This model suggests a novel type of bi-covalent flavinylation in PDH, 9- S -cysteinyl, 8-,- N3-histidyl FAD. The enzyme exhibits a broad sugar substrate tolerance, oxidizing structurally different aldopyranoses including monosaccharides and oligosaccharides as well as glycosides. Its preferred electron donor substrates are d -glucose, d -galactose, l -arabinose, and d -xylose. As shown by in situ NMR analysis, d -glucose and d -galactose are both oxidized at positions C2 and C3, yielding the corresponding didehydroaldoses (diketoaldoses) as the final reaction products. PDH shows no detectable activity with oxygen, and its reactivity towards electron acceptors is rather limited, reducing various substituted benzoquinones and complexed metal ions. The azino-bis-(3-ethylbenzthiazolin-6-sulfonic acid) cation radical and the ferricenium ion are the best electron acceptors, as judged by the catalytic efficiencies (kcat/Km). The enzyme may play a role in lignocellulose degradation. [source]


Physicochemical properties of Shiga toxigenic Escherichia coli

JOURNAL OF APPLIED MICROBIOLOGY, Issue 4 2005
L. Rivas
Abstract Aims:, To investigate the physicochemical surface properties, such as cellular surface charge, hydrophobicity and electron donor/acceptor potential of a selection of Shiga toxigenic Escherichia coli (STEC) isolates grown in broth and agar culture. Methods and Results:, Cellular surface charge was determined using zeta potential measurements. Hydrophobicity of the isolates was determined using bacterial adhesion to hydrocarbons assay, hydrophobic interaction chromatography and contact angle measurements. Microbial adhesion to solvents was used to determine the electron donor/acceptor characteristics. No differences of surface charge measurements were found between broth and agar grown cultures. Isolates belonging to serogroup O157 and serotypes O26:H11 and O111:H- were significantly (P < 0·05) less negatively charged than other STEC serotypes tested. All strains were hydrophilic with most methods and demonstrated a lower hydrophobicity in agar culture compared with broth culture. All strains demonstrated a strong microbial adhesion to chloroform indicating that STEC possess an electron donor and basic character. A relationship between serogroup O157 and other STEC serotypes was apparent using principal-component analysis (PCA). Conclusions:, Combining the results for physicochemical properties using PCA differentiated between strains belonging to the O157 serogroup and other STEC/non-STEC strains. PCA found similar results for broth and agar grown cultures. Significance and Impact of the Study:, Particular serotypes of STEC possess similar physicochemical properties which may play a role in their pathogenicity or potential attachment to various surfaces. [source]


Protein purification using chromatography: selection of type, modelling and optimization of operating conditions

JOURNAL OF MOLECULAR RECOGNITION, Issue 2 2009
J. A. Asenjo
Abstract To achieve a high level of purity in the purification of recombinant proteins for therapeutic or analytical application, it is necessary to use several chromatographic steps. There is a range of techniques available including anion and cation exchange, which can be carried out at different pHs, hydrophobic interaction chromatography, gel filtration and affinity chromatography. In the case of a complex mixture of partially unknown proteins or a clarified cell extract, there are many different routes one can take in order to choose the minimum and most efficient number of purification steps to achieve a desired level of purity (e.g. 98%, 99.5% or 99.9%). This review shows how an initial 'proteomic' characterization of the complex mixture of target protein and protein contaminants can be used to select the most efficient chromatographic separation steps in order to achieve a specific level of purity with a minimum number of steps. The chosen methodology was implemented in a computer- based Expert System. Two algorithms were developed, the first algorithm was used to select the most efficient purification method to separate a protein from its contaminants based on the physicochemical properties of the protein product and the protein contaminants and the second algorithm was used to predict the number and concentration of contaminants after each separation as well as protein product purity. The application of the Expert System approach was experimentally tested and validated with a mixture of four proteins and the experimental validation was also carried out with a supernatant of Bacillus subtilis producing a recombinant , -1,3-glucanase. Once the type of chromatography is chosen, optimization of the operating conditions is essential. Chromatographic elution curves for a three-protein mixture (, -lactoalbumin, ovalbumin and , -lactoglobulin), carried out under different flow rates and ionic strength conditions, were simulated using two different mathematical models. These models were the Plate Model and the more fundamentally based Rate Model. Simulated elution curves were compared with experimental data not used for parameter identification. Deviation between experimental data and the simulated curves using the Plate Model was less than 0.0189 (absorbance units); a slightly higher deviation [0.0252 (absorbance units)] was obtained when the Rate Model was used. In order to optimize operating conditions, a cost function was built that included the effect of the different production stages, namely fermentation, purification and concentration. This cost function was also successfully used for the determination of the fraction of product to be collected (peak cutting) in chromatography. It can be used for protein products with different characteristics and qualities, such as purity and yield, by choosing the appropriate parameters. Copyright © 2008 John Wiley & Sons, Ltd. [source]


New approaches for predicting protein retention time in hydrophobic interaction chromatography,

JOURNAL OF MOLECULAR RECOGNITION, Issue 4 2006
M. E. Lienqueo
Abstract Hydrophobic interaction chromatography (HIC) is an important technique for the purification of proteins. In this paper, we review three different approaches for predicting protein retention time in HIC, based either on a protein's structure or on its amino-acidic composition, and we have extended one of these approaches. The first approach correlates the protein retention time in HIC with the protein average surface hydrophobicity. This methodology is based on the protein three-dimensional structure data and considers the hydrophobic contribution of the exposed amino acid residues as a weighted average. The second approach, which we have extended, is based on the high correlation level between the average surface hydrophobicity of a protein's hydrophobic interacting zone and its retention time in HIC. Finally, a third approach carries out a prediction of the average surface hydrophobicity of a protein, using only its amino-acidic composition, without knowing its three-dimensional structure. These models would make it possible to test different operating conditions for the purification of a target protein by computer simulations, and thus make it easier to select the optimal conditions, contributing to the rational design and optimization of the process. Copyright © 2006 John Wiley & Sons, Ltd. [source]


Purification and some properties of a cysteine proteinase from sorghum malt variety SK5912

JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, Issue 2 2004
Augustine C Ogbonna
Abstract A cysteine proteinase from sorghum malt variety SK5912 was purified by a combination of 4 M sucrose fractionation, ion-exchange chromatography on Q- and S-Sepharose (fast flow), gel filtration chromatography on Sephadex G-100 and hydrophobic interaction chromatography on Phenyl Sepharose CL-4B. The enzyme was purified 8.4-fold to give a 13.4% yield relative to the total activity in the crude extract and a final specific activity of 2057.1 U mg,1 protein. SDS,PAGE revealed two migrating protein bands corresponding to apparent relative molecular masses of 55 and 62 kDa, respectively. The enzyme was optimally active at pH 6.0 and 50 °C, not influenced across a relatively broad pH range of 5.0,8.0 and retained over 60% activity at 70 °C after 30-min incubation. It was highly significantly (P < 0.001) inhibited by Hg2+, appreciably (P < 0.01) inhibited by Ag+, Ba2+ and Pb2+ but highly significantly (P < 0.001) activated by Co2+, Mn2+ and Sr2+. The proteinase was equally highly significantly (P < 0.001) inhibited by both iodoacetate and p -chloromercuribenzoate and hydrolysed casein to give the following kinetic constants: Km = 0.33 mg ml,1; Vmax = 0.08 µmol ml,1 min,1. Copyright © 2004 Society of Chemical Industry [source]


Purification and characterization of natural Bet v 1 from birch pollen and related allergens from carrot and celery

MOLECULAR NUTRITION & FOOD RESEARCH (FORMERLY NAHRUNG/FOOD), Issue 12 2007
Mirko A. Bollen
Abstract Birch pollen allergy is predominantly caused by the major allergen Bet v 1 and can lead to crossreactions with homologous proteins in food. Two major cross-reactive food allergens are Dau c 1 from carrot and Api g 1 from celery, which have never been purified from their natural source. Here, we describe a non-denaturing purification method for obtaining natural Bet v 1, Dau c 1 and Api g 1, comprising of ammonium sulfate precipitation, hydrophobic interaction chromatography and size exclusion chromatography. This method resulted in 98,99% pure isoform mixtures for each allergen. Characterization of these isoform mixtures with Q-TOF MS/MS clearly showed earlier reported isoforms of Bet v 1, Dau c 1 and Api g 1, but also new isoforms. The presence of secondary structure in the three purified allergens was demonstrated via circular dichroism and showed high similarity. The immune reactivity of the natural allergens was compared with recombinant proteins by Western blot and ELISA and showed similar reactivity. [source]


Purification and partial characterization of a dipeptidyl peptidase from Prevotella intermedia

MOLECULAR ORAL MICROBIOLOGY, Issue 3 2003
Y. Shibata
A peptidase hydrolyzed X-Pro- p -nitroanilide was purified from the cell extract of Prevotella intermedia ATCC 25611 by ion-exchange chromatography and hydrophobic interaction chromatography. The purified enzyme exhibited a molecular size of 74 kDa from sodium dodecyl sulfate-polyacrylamide gel electrophoresis and the maximum enzyme activity was found between pH 7.0 and pH 7.5. This peptidase was a serine enzyme and hydrolyzed Lys-Pro- p -nitroanilide, Arg-Pro- p -nitroanilide, and Ala-Pro- p -nitroanilide, but Lys-Ala- p -nitroanilide was not split. The enzyme may be classified as a dipeptidyl peptidase IV. [source]


Purification and characterisation of two ACC oxidases expressed differentially during leaf ontogeny in white clover

PHYSIOLOGIA PLANTARUM, Issue 1 2000
Deming Gong
Two isoforms of ACC oxidase (ACO) (EC 1.4.3), expressed differentially during leaf ontogeny in white clover (Trifolium repens L.), have been identified and purified to homogeneity. One isoform, designated MGI, was purified from mature green leaf tissue while the second isoform, designated SEII, was purified from senescent leaf tissue. The isolation and purification of these isoforms were achieved using a combination of hydrophobic interaction chromatography, anion exchange chromatography, chromatofocusing and gel filtration column chromatography. The Mr of both MGI and SEII was determined to be 37.5 kDa by gel filtration, and 37 kDa (MGI), 35 kDa (SEII) by SDS-PAGE, indicating that both isoforms are active as monomers. During purification, both isoforms were recognised by a polyclonal antibody directed against a recombinant polypeptide derived from a white clover ACO gene expressed in mature green leaf tissue, TR-ACO2. In addition to molecular mass, differences between the two isoforms were observed in terms of pH optima, isoelectric point (pI), Km for ACC, optimal requirements for the co-substrate ascorbate, and NaHCO3 and Fe2+ as co-factors. The identification of distinct ACC oxidases from the same tissue at different developmental stages shows that the now widely observed transcriptional regulation of the ACO gene family in higher plants is also expressed in terms of differential regulation of enzyme isoforms. [source]


Determination of the secondary structure of proteins in different environments by FTIR-ATR spectroscopy and PLS regression

BIOPOLYMERS, Issue 11 2008
Yeqiu Wang
Abstract The secondary structures of proteins (,-helical, ,-sheet, ,-turn, and random coil) in the solid state and when bound to polymer beads, containing immobilized phenyl and butyl ligands such as those as commonly employed in hydrophobic interaction chromatography, have been investigated using FTIR-ATR spectroscopy and partial least squares (PLS) methods. Proteins with known structural features were used as models, including 12 proteins in the solid state and 7 proteins adsorbed onto the hydrophobic surfaces. A strong PLS correlation was achieved between predictions derived from the experimental data for 4 proteins adsorbed onto the phenyl-modified beads and reference data obtained from the X-ray crystallographic structures with r2 values of 0.9974, 0.9864, 0.9924, and 0.9743 for ,-helical, ,-sheet, ,-turn, and random coiled structures, respectively. On the other hand, proteins adsorbed onto the butyl sorbent underwent greater secondary structural changes compared to the phenyl sorbent as evidenced from the poorer PLS r2 values (r2 are 0.9658, 0.9106, 0.9571, and 0.9340). The results thus indicate that the secondary structures for these proteins were more affected by the butyl sorbent, whereas the secondary structure remains relatively unchanged for the proteins adsorbed onto the phenyl sorbent. This study has important ramifications for understanding the nature of protein secondary structural changes following adsorption onto hydrophobic sorbent surfaces. This knowledge could also enable the development of useful protocols for enhancing the chromatographic purification of proteins in their native bioactive states. © 2008 Wiley Periodicals, Inc. Biopolymers 89: 895,905, 2008. This article was originally published online as an accepted preprint. The "Published Online" date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com [source]


Purification of cell culture-derived modified vaccinia ankara virus by pseudo-affinity membrane adsorbers and hydrophobic interaction chromatography

BIOTECHNOLOGY & BIOENGINEERING, Issue 2 2010
Michael W. Wolff
Abstract A purification scheme for cell culture-derived smallpox vaccines based on an orthogonal downstream process of pseudo-affinity membrane adsorbers (MA) and hydrophobic interaction chromatography (HIC) was investigated. The applied pseudo-affinity chromatography, based on reinforced sulfated cellulose and heparin-MA, was optimized in terms of dynamic binding capacities, virus yield and process productivity. HIC was introduced as a subsequent method to further reduce the DNA content. Therefore, two screens were undertaken. First, several HIC ligands were screened for different adsorption behavior between virus particles and DNA. Second, elution from pseudo-affinity MA and adsorption of virus particles onto the hydrophobic interaction matrix was explored by a series of buffers using different ammonium sulfate concentrations. Eventually, variations between different cultivation batches and buffer conditions were investigated. The most promising combination, a sulfated cellulose membrane adsorber with subsequent phenyl HIC resulted in overall virus particle recoveries ranging from 76% to 55% depending on the product batch and applied conditions. On average, 61% of the recovered virus particles were infective within all tested purification schemes and conditions. Final DNA content varied from 0.01% to 2.5% of the starting material and the level of contaminating protein was below 0.1%. Biotechnol. Bioeng. 2010;107: 312,320. © 2010 Wiley Periodicals, Inc. [source]


Protein instability during HIC: Hydrogen exchange labeling analysis and a framework for describing mobile and stationary phase effects

BIOTECHNOLOGY & BIOENGINEERING, Issue 1 2007
Yunzhi Xiao
Abstract Unfolding of marginally stable proteins is a significant factor in commercial application of hydrophobic interaction chromatography (HIC). In this work, hydrogen-deuterium isotope exchange labeling has been used to monitor protein unfolding on HIC media for different stationary phase hydrophobicities and as a function of ammonium sulfate concentration. Circular dichroism and Raman spectroscopy were also used to characterize the structural perturbations experienced by solution phase protein that had been exposed to media and by protein adsorbed on media. As expected, greater instability is seen on chromatographic media with greater apparent hydrophobicity. However, increased salt concentrations also led to more unfolding, despite the well-known stabilizing effect of ammonium sulfate in solution. A thermodynamic framework is proposed to account for the effects of salt on both adsorption and stability during hydrophobic chromatography. Using appropriate estimates of input quantities, analysis with the framework can explain how salt effects on stability in chromatographic systems may contrast with solution stability. Biotechnol. Bioeng. 2007;96: 80,93. © 2006 Wiley Periodicals, Inc. [source]


Large scale demonstration of a process analytical technology application in bioprocessing: Use of on-line high performance liquid chromatography for making real time pooling decisions for process chromatography

BIOTECHNOLOGY PROGRESS, Issue 2 2010
Anurag S. Rathore
Abstract Process Analytical Technology (PAT) has been gaining a lot of momentum in the biopharmaceutical community because of the potential for continuous real time quality assurance resulting in improved operational control and compliance. In previous publications, we have demonstrated feasibility of applications involving use of high performance liquid chromatography (HPLC) and ultra performance liquid chromatography (UPLC) for real-time pooling of process chromatography column. In this article we follow a similar approach to perform lab studies and create a model for a chromatography step of a different modality (hydrophobic interaction chromatography). It is seen that the predictions of the model compare well to actual experimental data, demonstrating the usefulness of the approach across the different modes of chromatography. Also, use of online HPLC when the step is scaled up to pilot scale (a 2294 fold scale-up from a 3.4 mL column in the lab to a 7.8 L column in the pilot plant) and eventually to manufacturing scale (a 45930 fold scale-up from a 3.4 mL column in the lab to a 158 L column in the manufacturing plant) is examined. Overall, the results confirm that for the application under consideration, online-HPLC offers a feasible approach for analysis that can facilitate real-time decisions for column pooling based on product quality attributes. The observations demonstrate that the proposed analytical scheme allows us to meet two of the key goals that have been outlined for PAT, i.e., "variability is managed by the process" and "product quality attributes can be accurately and reliably predicted over the design space established for materials used, process parameters, manufacturing, environmental, and other conditions". The application presented here can be extended to other modes of process chromatography and/or HPLC analysis. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010 [source]


Separation of product associating E. coli host cell proteins OppA and DppA from recombinant apolipoprotein A-IMilano in an industrial HIC unit operation

BIOTECHNOLOGY PROGRESS, Issue 2 2009
Alan K. Hunter
Abstract We have shown how product associating E. coli host cell proteins (HCPs) OppA and DppA can be substantially separated from apolipoprotein A-IMilano (apo A-IM) using Butyl Sepharose hydrophobic interaction chromatography (HIC). This work illustrates the complex problems that frequently arise during development and scale-up of biopharmaceutical manufacturing processes. Product association of the HCPs is confirmed using co-immunoprecipitation and Western blotting techniques. Two-dimensional gel electrophoresis and mass spectrometry techniques are used to confirm the identity of OppA and DppA. In this example, clearance of these difficult to separate HCPs decreased significantly when the process was scaled to a 1.4 m diameter column. Laboratory-scale experimentation and trouble shooting identified several key parameters that could be further optimized to improve HCP clearance. The key parameters included resin loading, peak cut point on the ascending side, wash volume, and wash salt concentration. By implementing all of the process improvements that were identified, it was possible to obtain adequate HCP clearance so as to meet the final specification. Although it remains speculative, it is believed that viscosity effects may have contributed to the lower HCP clearance observed early in the manufacturing campaign. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009 [source]


Quantifying Process Tradeoffs in the Operation of Chromatographic Sequences

BIOTECHNOLOGY PROGRESS, Issue 4 2003
Sheau-Huey Ngiam
A method for the rapid representation of key process tradeoffs that need to be made during the analysis of chromatographic sequences has been proposed. It involves the construction of fractionation and maximum purification factor versus yield diagrams, which can be completed easily on the basis of chromatographic data. The output of the framework developed reflects the degree of tradeoff between levels of yield and purity and provides a fast and precise prediction of the sample fraction collection strategy needed to meet a desired process specification. The usefulness of this approach for the purposes of product purification and contaminant removal in a single chromatographic step has been successfully demonstrated in an earlier paper and it is now extended by application to a chromatographic sequence: the separation of a hypothetical three-component protein system by hydrophobic interaction chromatography (HIC) followed by size exclusion chromatography (SEC). The HIC operation has a strong impact upon the subsequent SEC step. The studies show how the analysis of performance in such a chromatographic sequence can be carried out easily and in a straightforward fashion using the fractionation diagram approach. The methodology proposed serves as a useful tool for identifying the process tradeoffs that must be made during operation of a sequence of chromatographic steps and indicates the impact on further processing of the cut-point decisions that are made. [source]