Hydrophilic Nature (hydrophilic + nature)

Distribution by Scientific Domains


Selected Abstracts


An Evaluation of Physicochemical Treatment Technologies for Water Contaminated with MTBE

GROUND WATER MONITORING & REMEDIATION, Issue 4 2000
Arturo A. Keller
Treatment of methyl tertiary-butyl ether (MTBE) from contaminated surface and ground water supplies presents specific challenges due to the physicochemical properties of MTBE that depend strongly on its hydrophilic nature, and translate into a high solubility in water, and low Henry's constant and low affinity for common adsorbents. We evaluate four treatment technologies-air stripping, granular activated carbon (GAC), hydrophobic hollow fiber membranes, and advanced oxidation processes (AOP)-using ozone or ozone/hydrogen peroxide. Experimental work was carried out to generate parameter values necessary for the design of these processes. Ten different flow rates/concentration combinations were evaluated in our designs to cover the range from high flow rate/low concentration typical of surface water and ground water drinking water supplies to low flow rate/high concentration typical of ground water remediation sites. For all cases, the processes were designed to produce effluent water of 5 ,g/L or less. Capital costs and operation and maintenance costs were determined at the feasibility level by using standard engineering estimating practices. Air stripping is the lowest cost technology for high flow rales (100 to 1000 gpm) if no air treatment is required. Hollow fiber membranes are the lowest cost technology for flow rates of 10 to 100 gpm if no air treatment is required, which is typical at these low flow rates. GAC will be most costeffective at all flow rates if air treatment is required and the influent water has low levels of other organic compounds. AOP using ozone or ozone/hydrogen peroxide is in all cases more expensive than the alternative technologies, and there are sufficient uncertainties at this point with respect to byproducts of AOP to warrant further study of this technology. The cost of treating MTBE-contaminated water for conventional technologies such as air stripping and GAC is 40% to 80% higher than treating water contaminated only with other hydrocarbons such as benzene. [source]


Effect of the carboxylic acid monomer type on the emulsifier-free emulsion copolymerization of styrene and butadiene

JOURNAL OF APPLIED POLYMER SCIENCE, Issue 2 2007
Mahdi Abdollahi
Abstract Carboxylated styrene,butadiene rubber latexes were prepared through the emulsifier-free emulsion copolymerization of styrene and butadiene with various carboxylic acid monomers. The effects of various carboxylic acid monomers on the particle formation process were investigated. The type of carboxylic acid monomer strongly affected the particle nucleation. The number of particles and thus the polymerization rate increased with the increasing hydrophobicity of the carboxylic acid monomers. There was a significant difference in the polymerization rate per particle. The results showed that particle nucleation and growth were dependent on the hydrophilic nature of the carboxylic acid monomers. The average particle diameter of the carboxylated styrene,butadiene rubber latexes in the dry state was obtained through some calculations using direct measurements of the average particle diameter in the monomer-swollen state by a dynamic light scattering technique. Several parameters, such as the polymerization rate, number of latex particles per unit of volume of the aqueous phase, and polymerization rate per particle, were calculated. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007 [source]


Towards waste minimisation in WWTP: activated carbon from biological sludge and its application in liquid phase adsorption

JOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY, Issue 7 2002
Maria J Martin
Abstract Surplus sludge produced during the biological treatment of wastewater requires costly disposal procedures. With increasing environmental and legislative constraints, increasing sludge production and more limited disposal options, new recycling alternatives have to be found. The possibility of obtaining activated carbons from surplus biological sludge by chemical activation with H2SO4 has been investigated. Operational parameters such as the amount of H2SO4 added, the temperature, and activation time were modified to ascertain their influence on the quality of the activated carbon obtained. The quality of the sludge-based activated carbons was evaluated by established characterisation parameters for adsorption from solution such as phenol value, iodine number, methylene blue number and tannin value and compared with commercial activated carbons. Activation at 700,°C for 30,min in the presence of 0.5,cm3 H2SO4,g,1 dry solids in the sludge led to an activated carbon with a good capacity for iodine and tannic acid. The sludge-derived activated carbon obtained is mesoporous in nature with a high presence of large macropores. Weak and moderate acidic surface functional groups were detected on the surface, which impart a hydrophilic nature to the solid. When compared with a commercial activated carbon, the sludge-derived activated carbon performed better when removing dyes with a high presence of anionic solubilising groups and heavy metals. The results indicate that COD adsorption from a biologically-treated effluent may also be an area for application. © 2002 Society of Chemical Industry [source]


EFFECT OF GLYCEROL ON PHYSICAL PROPERTIES OF CASSAVA STARCH FILMS

JOURNAL OF FOOD PROCESSING AND PRESERVATION, Issue 2010
P. BERGO
ABSTRACT In this work, the effect of glycerol on the physical properties of edible films were identified by X-ray diffraction (XRD), differential scanning calorimetry (DSC), infrared (FTIR) and microwave spectroscopy. According to XRD diffractograms, films with 0 and 15% glycerol displayed an amorphous character, and a tendency to semicrystallization, for films with 30% and 45% glycerol. From DSC thermograms, the glass transition (Tg) of the films decreased with glycerol content. However, two Tgs were observed for samples with 30% and 45% glycerol, due to a phase separation. The intensity and positions of the peaks in FTIR fingerprint region presented slight variations due to new interactions arising between glycerol and biopolymer. Microwave measurements were sensitive to moisture content in the films, due to hydrophilic nature of the glycerol. The effect of plasticizer plays, then, an important rule on the physical and functional properties of these films, for applications in food technology. PRACTICAL APPLICATIONS Edible and/or biodegradable films are thin materials used mainly in food recovering, food packaging and other applications, in substitution of the films obtained by synthetic ways. In view of these applications, these films must satisfy some of the exigencies in order to increase the food shelf-life, or in other words, they must be flexible, transparent, resistant to some gases such as oxygen, as well as resistant to water vapor. The addition of plasticizers alters the functional properties of the films. Thus, the physical characterization of these films becomes fundamental in order to increase their potential use in industry. [source]


Novel temperature- and pH-responsive graft copolymers composed of poly(L -glutamic acid) and poly(N -isopropylacrylamide)

JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 12 2008
Chaoliang He
Abstract A series of novel temperature- and pH-responsive graft copolymers, poly(L -glutamic acid)- g -poly(N -isopropylacrylamide), were synthesized by coupling amino-semitelechelic poly(N -isopropylacrylamide) with N -hydroxysuccinimide-activated poly(L -glutamic acid). The graft copolymers and their precursors were characterized, by ESI-FTICR Mass Spectrum, intrinsic viscosity measurements and proton nuclear magnetic resonance (1H NMR). The phase-transition and aggregation behaviors of the graft copolymers in aqueous solutions were investigated by the turbidity measurements and dynamic laser scattering. The solution behavior of the copolymers showed dependence on both temperature and pH. The cloud point (CP) of the copolymer solution at pH 5.0,7.4 was slightly higher than that of the solution of the PNIPAM homopolymer because of the hydrophilic nature of the poly(glutamic acid) (PGA) backbone. The CP markedly decreased when the pH was lowered from 5 to 4.2, caused by the decrease in hydrophilicity of the PGA backbone. At a temperature above the lower critical solution temperature of the PNIPAM chain, the copolymers formed amphiphilic core-shell aggregates at pH 4.5,7.4 and the particle size was reduced with decreasing pH. In contrast, larger hydrophobic aggregates were formed at pH 4.2. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4140,4150, 2008 [source]


Humidity-Responsive Starch-Poly(methyl acrylate) Films

MACROMOLECULAR CHEMISTRY AND PHYSICS, Issue 7 2008
Julious L. Willett
Abstract Blown films prepared from starch-poly(methyl acrylate) graft copolymers plasticized with urea and water display shrinkage at relative humidities greater than 50%. Shrinkage at relative humidities below approximately 75% is strongly correlated with the urea/starch weight ratio, which controls the equilibrium moisture content (MC) in the films. Above 75% relative humidity, film shrinkage is essentially independent of composition. At relative humidities below 90%, films plasticized with urea and water exhibited greater shrinkage than films plasticized with water only. A master curve can be constructed by shifting shrinkage data with respect to a reference relative humidity, indicating that relaxation processes in the starch phase control film shrinkage. This conclusion is confirmed by the fact that shrinkage data for a wide range of compositions and relative humidities fall on a single curve when plotted against MC. Polarized Fourier transform infrared spectroscopy indicated some loss of orientation in the starch phase during shrinkage. These results demonstrate that the hydrophilic nature of starch can be exploited to develop responsive polymers which display controllable shrinkages activated by increases in relative humidities. [source]


Compatibilizers based on polypropylene grafted with itaconic acid derivatives.

POLYMER ENGINEERING & SCIENCE, Issue 4 2003
Effect on polypropylene/polyethylene terephthalate blends
New types of compatibilizers based on functionalized polypropylene (PP) were synthesized by radical melt grafting either with monomethyl itaconate or dimethyl itaconate. The effect of these new modified PP compounds were tested as compatibilizers in PP/polyethylene terephthalate (PET) blends. Blends with compositions 15/85 and 30/70 by weight of PP and PET were prepared in a single-screw extruder. Morphology of the compatibilized blends revealed a very fine and uniform dispersion of the PP phase as compared with that of noncompatibilized blends of the same composition, leading to improved adhesion between the two phases. Whereas dimethyl itaconate derived agent showed less activity, the monomethyl itaconate parent compound showed an increase of the impact resistance of PET in PP/PET blend. This was attributed to the hydrophilic nature of the monomethyl itaconate part of this compatibilizer. The tensile strength of PET in noncompatibilized blends gradually decreases as the PP content increases, while blends containing functionalized PP exhibited higher values. [source]


Wood/plastic composites co-extruded with multi-walled carbon nanotube-filled rigid poly(vinyl chloride) cap layer

POLYMER INTERNATIONAL, Issue 5 2010
Shan Jin
Abstract Wood/plastic composites (WPCs) can absorb moisture in a humid environment due to the hydrophilic nature of the wood in the composites, making products susceptible to microbial growth and loss of mechanical properties. Co-extruding a poly(vinyl chloride) (PVC)-rich cap layer on a WPC significantly reduces the moisture uptake rate, increases the flexural strength but, most importantly, decreases the flexural modulus compared to uncapped WPCs. A two-level factorial design was used to develop regression models evaluating the statistical effects of material compositions and a processing condition on the flexural properties of co-extruded rigid PVC/wood flour composites with the ultimate goal of producing co-extruded composites with better flexural properties than uncapped WPCs. Material composition variables included wood flour content in the core layer and carbon nanotube (CNT) content in the cap layer of the co-extruded composites, with the processing temperature profile for the core layer as the only processing condition variable. Fusion tests were carried out to understand the effects of the material compositions and processing condition on the flexural properties. Regression models indicated all main effects and two powerful interaction effects (processing temperature/wood flour content and wood flour content/CNT content interactions) as statistically significant. Factors leading to a fast fusion of the PVC/wood flour composites in the core layer, i.e. low wood flour content and high processing temperature, were effective material composition and processing condition parameters for improving the flexural properties of co-extruded composites. Reinforcing the cap layer with CNTs also produced a significant improvement in the flexural properties of the co-extruded composites, insensitive to the core layer composition and the processing temperature condition. Copyright © 2009 Society of Chemical Industry [source]


A facile approach to surface graft vinyl acetate onto polyolefin articles

POLYMERS FOR ADVANCED TECHNOLOGIES, Issue 9 2004
Lin Tan
Abstract A facile and environment friendly approach was developed to graft vinyl acetate (VAc) onto plastic articles in an aqueous solution using tert -butyl alcohol (TBA) as a compatiblizer and benzoyl peroxide (BPO) as an initiator. In a novel setup, excessive monomer suspended in a water phase, VAc could be conveniently grafted on the model substrate of low-density polyethylene (LDPE) film and the graft percentage (GP) could be developed up to 7.3%. Reaction temperature could increase GP significantly, while adding monomer over a critical volume did not influence GP. By adding some paradioxybenzene, i.e. 0.06,0.08% in VAc phase, homopolymer PVAc could be avoided practically, while graft polymerization proceeded favorably in aqueous solutions. It was proved by attenuated total reflection-infrared (ATR-IR) spectroscopy that grafted VAc was located mainly at the surface of the LDPE film and hydrophilic nature of both grafted and alcoholyzed films were improved via contact angle measurements. Copyright © 2004 John Wiley & Sons, Ltd. [source]