Home About us Contact | |||
Hydrophilic Character (hydrophilic + character)
Selected AbstractsComputational study of the solvation of protoporphyrin IX and its Fe2+ complexINTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, Issue 13 2008Teobaldo Cuya Guizado Abstract Molecular dynamics (MD) simulations of a well known hydrophobic structure, the heme (ferroprotoporphyrin IX) and its precursor in the heme synthesis, protoporphyrin IX (PPIX) are presented. The objective of the present study is to determine the stability of both structures in an aqueous medium, as well as the structure-solvent relation, hydration shells, and discuss their implications for biological processes. The density functional theory (DFT) is used for the electronic and structural characterization of both PPIX and its Fe2+ complex. A classical approach based on the Gromacs package is used for the MD. The radial distribution function g(r) is used to examine the allocation of water molecules around different regions of the porphyrins. The calculations demonstrate the heterogeneous character of the porphyrins with respect to the affinity with water molecules, the general hydrophobic character of the porphyrin ring bonded or not to the ion Fe, the hydrophilic character of the carboxylic oxygen that is unchanged upon iron binding, and the low hydrophilicity of Fe2+ in the heme. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2008 [source] Preparation of amphiphilic statistical copolymers of 2-hydroxyethyl methacrylate with 2-diethylaminoethyl methacrylate, precursors of water-soluble copolymersJOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 14 2002Gerardo Martinez Abstract Statistical copolymers of 2-hydroxyethyl methacrylate (HEMA) and 2-diethylaminoethyl methacrylate (DEA) were synthesized at 50 °C by free-radical copolymerization in bulk and in a 3 mol L,1N,N,-dimethylformamide solution with 2,2,-azobisisobutyronitrile as an initiator. The solvent effect on the apparent monomer reactivity ratios was attributed to the different aggregation states of HEMA monomer in the different solvents. The copolymers obtained were water-insoluble at a neutral pH but soluble in an acidic medium when the molar fraction of the DEA content was higher than 0.5. The quaternization of DEA residues increased the hydrophilic character of the copolymers, and they became water-soluble at a neutral pH when the HEMA content was lower than 0.25. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2427,2434, 2002 [source] 4-Thio-deoxyuridylate-modified thrombin aptamer and its inhibitory effect on fibrin clot formation, platelet aggregation and thrombus growth on subendothelial matrixJOURNAL OF THROMBOSIS AND HAEMOSTASIS, Issue 10 2008S. MENDELBOUM RAVIV Summary.,Background:,The consensus thrombin aptamer C15-mer is a single-stranded DNA of 15 nucleotides [d(GGTTGGTGTGGTTGG)] that was identified by the selection of thrombin-binding molecules from a large combinatorial library of oligonucleotides. It is capable of inhibiting thrombin at nanomolar concentrations through binding to a specific region within thrombin exosite 1. As has been shown in our earlier studies, the 4-thio-deoxyuridylate (s4dU)-containing oligonucleotides have high affinity for a number of proteins, due to the reduced hydrophilic character of the modified oligonucleotide. Methods:,Three different analogs of the original thrombin-inhibiting sequence, in which some of the thymidylate residues were replaced by 4-thio-deoxyuridylates, were synthesized. The inhibitory effect of modified aptamers was tested on thrombin-catalyzed fibrin clot formation and fibrinopeptide A release from fibrinogen, thrombin-induced platelet aggregation/secretion, and the formation of thrombus on coverslips coated with human collagen type III, thrombin-treated fibrinogen or subendothelial matrix of human microvascular endothelial cells. Results:,As compared with the C15-mer, the analog with the sequence GG(s4dU)TGG(s4dU)G(s4dU)GGT(s4dU)GG (UC15-mer) showed a 2-fold increased inhibition of thrombin-catalyzed fibrin clot formation, fibrinopeptide A release, platelet aggregation and secretion in human plasma and thrombus formation on thrombin-treated fibrinogen surfaces under flow conditions. Concerning the inhibition of thrombin-induced fibrin formation from purified fibrinogen and activation of washed platelets, UC15-mer was 3-fold and twelve-fold more effective than C15-mer, respectively. Conclusion:,The replacement of four thymidylate residues in C15-mer by 4-thio-deoxyuridylate resulted in a new thrombin aptamer with increased anticoagulant and antithrombotic properties. [source] Association between plasticized starch and polyesters: Processing and performances of injected biodegradable systemsPOLYMER ENGINEERING & SCIENCE, Issue 5 2001Luc Avérous Different formulations of wheat thermoplastic starch (TPS) have been processed with various plasticizer/starch ratios and moisture contents. The biodegradable polyesters tested are polycaprolactone (PCL), polyester amide (PEA), polybutylene succinate adipate (PBSA) and polybutylene adipate co terephtalate (PBAT). TPS and polyesters are melt blended in different proportions by extrusion and then injected to obtain dumbbell specimens. Various properties are evaluated such as the mechanical properties (tensile and impact tests), and the hydrophilic character with contact angle measurements. Additionally, uniaxial shrinkage is evaluated. Results show that the addition of polyester to TPS increases the dimensional post-injection stability. Blend modulus values are close to the results of the classical rule of mixture. Elongation at break, resilience values and SEM observations seem to give some indications about the compatibility between both polymeric systems. PBAT and PEA present better results than PCL and PBSA. Contact angle measurement show that we have a drastic increase of the hydrophobic character from 10% of polyester in the blend. The different combinations of TPS and polyesters give a wide range of mechanical behavior for compostable materials, to be developed in specific applications. [source] Fibrillation of ,-lactalbumin: Effect of crocin and safranal, two natural small molecules from Crocus sativus,BIOPOLYMERS, Issue 10 2010Mohammad-Bagher Ebrahim-Habibi Abstract Formation of toxic amyloid structures is believed to be associated with various late-onset neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. The fact that many proteins in addition to those that are associated with clinical conditions have the potential to form amyloid fibrils in vitro provides opportunities for studying the fundamentals of protein aggregation and amyloid formation in model systems. Accordingly, considerable interest and effort has been directed toward developing small molecules to inhibit the formation of fibrillar assemblies and their associated toxicities. In the present study, we investigated the inhibitory effect of crocin and safranal, two principal components of saffron, on fibrillation of apo-,-lactalbumin (a-,-LA), used as a model protein, under amyloidogenic conditions. In the absence of any ligand, formation of soluble oligomers became evident after 18 h of incubation, followed by subsequent appearance of mature fibrils. Upon incubation with crocin or safranal, while transition phase to monomeric beta structures was not significantly affected, formation of soluble oligomers and following fibrillar assemblies were inhibited. While both safranal and crocin had the ability to bind to hydrophobic patches provided in the intermediate structures, and thereby inhibit protein aggregation, crocin was found more effective, possibly due to its simultaneous hydrophobic and hydrophilic character. Cell viability assay indicated that crocin could diminish toxicity while safranal act in reverse order. © 2010 Wiley Periodicals, Inc. Biopolymers 93: 854,865, 2010. [source] |