Home About us Contact | |||
Hydrologic Cycle (hydrologic + cycle)
Selected AbstractsBorn to Trouble: Bernard Palissy and the Hydrologic CycleGROUND WATER, Issue 6 2005David Deming No abstract is available for this article. [source] The use of peepers to sample pore water in acid sulphate soilsEUROPEAN JOURNAL OF SOIL SCIENCE, Issue 4 2008P. VanOploo Summary Serious environmental impacts of acidic drainage from acid sulphate soils in coastal areas are the result of the interactions between the hydrologic cycle, land use and drainage management, and pore water chemistry. In this study, in situ, diffusion-controlled dialysis profile samplers, or peepers, were used to examine pore water chemistry of acid sulphate soils in a coastal, sugarcane-producing area in Eastern Australia. The peepers sampled pore water at 20-mm intervals over a 1.0-m length, permitting excellent resolution of the sharp transitions in pore water chemistry that occur around a soil profile's iron sulphide oxidation front. Comparison of peeper profiles with soil water profiles extracted from soil samples by centrifuging, illustrated the advantages of peepers over conventional soil water sampling techniques in unconsolidated, sulphidic soils. For conventional sampling, the low permeability, gel-like, unoxidized soil samples had to be frozen then thawed before water could be extracted by centrifuging. Peeper profiles of species not involved in redox reactions agreed well with those from centrifuged soil extracts. Redox sensitive species, however, were in poorer agreement because of the lengthy soil sample preparation and extraction procedures required for extraction by centrifuging. The approximately 6-day equilibration time required for peeper sampling allows them to follow monthly or seasonal changes in pore water chemistry in acid sulphate soils due to variations in climate, and land use and management. [source] The impacts of Miscanthus×giganteus production on the Midwest US hydrologic cycleGCB BIOENERGY, Issue 4 2010ANDY VANLOOCKE Abstract Perennial grasses are being considered as candidates for biofuel feedstocks to provide an alternative energy source to fossil fuels. Miscanthus×giganteus (miscanthus), in particular, is a grass that is predicted to provide more energy per sown area than corn ethanol and reduce net carbon dioxide emissions by increasing the storage of carbon belowground. Miscanthus uses more water than Zea mays (maize), mainly as a result of a longer growing season and higher productivity. Conversion of current land use for miscanthus production will likely disrupt regional hydrologic cycles, yet the magnitude, timing, and spatial distribution of effects are unknown. Here, we show the effects of five different scenarios of miscanthus production on the simulated Midwest US hydrologic cycle. Given the same historic precipitation observations, our ecosystem model simulation results show that on an annual basis miscanthus uses more water than the ecosystems it will likely replace. The actual timing and magnitude of increased water loss to the atmosphere depends on location; however, substantial increases only occur when miscanthus fraction cover exceeds 25% in dry regions and 50% in nearly all of the Midwest. Our results delineate where large-scale land use conversion to perennial biofuel grasses might deplete soil water resources. Given the fact that some watersheds within the Midwest already have depleted water resources, we expect our results to inform decisions on where to grow perennial grasses for biofuel use to ensure sustainability of energy and water resources, and to minimize the potential for deleterious effects to water quantity and quality. [source] Impact of land use and land cover change on groundwater recharge and quality in the southwestern USGLOBAL CHANGE BIOLOGY, Issue 10 2005Bridget R. Scanlon Abstract Humans have exerted large-scale changes on the terrestrial biosphere, primarily through agriculture; however, the impacts of such changes on the hydrologic cycle are poorly understood. The purpose of this study was to test the hypothesis that the conversion of natural rangeland ecosystems to agricultural ecosystems impacts the subsurface portion of the hydrologic cycle by changing groundwater recharge and flushing salts to underlying aquifers. The hypothesis was examined through point and areal studies investigating the effects of land use/land cover (LU/LC) changes on groundwater recharge and solute transport in the Amargosa Desert (AD) in Nevada and in the High Plains (HP) in Texas, US. Studies use the fact that matric (pore-water-pressure) potential and environmental-tracer profiles in thick unsaturated zones archive past changes in recharging fluxes. Results show that recharge is related to LU/LC as follows: discharge through evapotranspiration (i.e., no recharge; upward fluxes <0.1 mm yr,1) in natural rangeland ecosystems (low matric potentials; high chloride and nitrate concentrations); moderate-to-high recharge in irrigated agricultural ecosystems (high matric potentials; low-to-moderate chloride and nitrate concentrations) (AD recharge: ,130,640 mm yr,1); and moderate recharge in nonirrigated (dryland) agricultural ecosystems (high matric potentials; low chloride and nitrate concentrations, and increasing groundwater levels) (HP recharge: ,9,32 mm yr,1). Replacement of rangeland with agriculture changed flow directions from upward (discharge) to downward (recharge). Recent replacement of rangeland with irrigated ecosystems was documented through downward displacement of chloride and nitrate fronts. Thick unsaturated zones contain a reservoir of salts that are readily mobilized under increased recharge related to LU/LC changes, potentially degrading groundwater quality. Sustainable land use requires quantitative knowledge of the linkages between ecosystem change, recharge, and groundwater quality. [source] Transient storage and downstream solute transport in nested stream reaches affected by beaver damsHYDROLOGICAL PROCESSES, Issue 17 2009Li Jin Abstract Transient storage constitutes a key element in the hydrologic cycle of watersheds. Both in-channel slow moving water (dead zones) and hyporheic zones can contribute to transient storage, which retains water and solutes, increases residence time and influences solute transport in streams. Beaver dams and other in-stream obstructions throughout low-order streams attenuate streamflow and provide dead zone storage in pools. In this article, we report the results of four tracer tests in nested stream reaches in Cherry Creek (Wyoming, USA) covering ,2·5 km of stream length to explore how the degree of beaver dam obstructions and their impoundments influence water transient storage and downstream solute transport in low-order streams in the Rocky Mountain region of the American West. Travel-time parameters for the tracer tests increased linearly with beaver dam number (N) and pond size (V). Linear regression of the travel time to the peak concentration (Tp), the leading (Tl) and tailing edge (Tt) of the dye cloud and the duration of the dye cloud (Td) versus N and V were all significant (R2 = 0·99). Slopes of the linear regressions of Tt versus N and V, were three times larger than those for Tl, suggesting that longer residence times may be caused, in part, by transient storage in the stream system. One-dimensional transport with inflow and storage (OTIS) modelled cross-sectional area of transient storage zone (As) and dispersion coefficients (D) increased linearly with N and V and reach length. Two transient storage metrics, Fmean and , also showed a general increase with N and V, although the relationship was not as strong. This suggests that in-channel dead zones associated with beaver dams provide opportunities for generating transient water storage. The linear relationship between dispersion coefficient and reach length suggests the dispersion process might be analogous to the hydrodynamic dispersion in groundwater settings. Copyright © 2009 John Wiley & Sons, Ltd. [source] Seasonal changes in radiation and evaporation implied from the diurnal distribution of rainfall in the Lower MekongHYDROLOGICAL PROCESSES, Issue 9 2008Kumiko Tsujimoto Abstract Solar radiation is an important input to many empirical equations for estimating evaporation, which in turn plays an important role in the hydrologic cycle in the Lower Mekong River Basin due to the high evaporation potential of the tropical monsoon climate. Few proper meteorological data exist for the Lower Mekong River Basin, however, and the region's meteorological conditions, including seasonal variation in radiation and evaporation, have not been clarified. In this study, ground-based hourly hydrometeorological data were collected at three observation stations located in different land-use types (urban district, paddy area, and lake) in the Lower Mekong River Basin. These data were analysed to investigate the seasonal variation in radiation and evaporation related to the diurnal distribution of rainfall. Contrary to common expectations, our results showed that rainy and dry seasons had nearly the same amount of solar radiation in the Lower Mekong River Basin because (1) rainy seasons had a relatively larger amount of extraterrestrial radiation; (2) no rain fell on nearly half of the days during rainy seasons; and (3) the amount of solar radiation on rainy days reached 88% of that on non-rainy days. The third factor was attributed to the high frequency of evening rainfall. Furthermore, this rainfall,radiation relationship meant that rainy seasons had a large amount of net radiation due to the low reduction ratio of solar radiation and an increase in long-wave incoming radiation. Accordingly, rainy seasons had a high evaporation potential. Moreover, for the rain-fed rice paddies that prevail in this region, sufficient radiation during the rainy season would be a great advantage for rice growing. Copyright © 2008 John Wiley & Sons, Ltd. [source] Hydroclimatic teleconnection between global sea surface temperature and rainfall over India at subdivisional monthly scaleHYDROLOGICAL PROCESSES, Issue 14 2007Rajib Maity Abstract It is well established that sea surface temperature (SST) plays a significant role in the hydrologic cycle in which precipitation is the most important part. In this study, the influence of SST on Indian subdivisional monthly rainfall is investigated. Both spatial and temporal influences are investigated. The most influencing regions of sea surface are identified for different subdivisions and for different overlapping seasons in the year. The relative importance of SST, land surface temperature (LST) and ocean,land temperature contrast (OLTC) and their variation from subdivision to subdivision and from season to season are also studied. It is observed that LST does not show much similarity with rainfall series, but, in general, OLTC shows relatively higher influence in the pre-monsoon and early monsoon periods, whereas SST plays a more important role in late- and post-monsoon periods. The influence of OLTC is seen to be mostly confined to the Indian Ocean region, whereas the effect of SST indicates the climatic teleconnection between Indian regional rainfall and climate indices in Pacific and Atlantic Oceans. Copyright © 2006 John Wiley & Sons, Ltd. [source] The potential roles of biological soil crusts in dryland hydrologic cyclesHYDROLOGICAL PROCESSES, Issue 15 2006Jayne Belnap Abstract Biological soil crusts (BSCs) are the dominant living cover in many drylands of the world. They possess many features that can influence different aspects of local hydrologic cycles, including soil porosity, absorptivity, roughness, aggregate stability, texture, pore formation, and water retention. The influence of biological soil crusts on these factors depends on their internal and external structure, which varies with climate, soil, and disturbance history. This paper presents the different types of biological soil crusts, discusses how crust type likely influences various aspects of the hydrologic cycle, and reviews what is known and not known about the influence of biological crusts on sediment production and water infiltration versus runoff in various drylands around the world. Most studies examining the effect of biological soil crusts on local hydrology are done by comparing undisturbed sites with those recently disturbed by the researchers. Unfortunately, this greatly complicates interpretation of the results. Applied disturbances alter many soil features such as soil texture, roughness, aggregate stability, physical crusting, porosity, and bulk density in ways that would not necessarily be the same if crusts were not naturally present. Combined, these studies show little agreement on how biological crusts affect water infiltration or runoff. However, when studies are separated by biological crust type and utilize naturally occurring differences among these types, results indicate that biological crusts in hyperarid regions reduce infiltration and increase runoff, have mixed effects in arid regions, and increase infiltration and reduce runoff in semiarid cool and cold drylands. However, more studies are needed before broad generalizations can be made on how biological crusts affect infiltration and runoff. We especially need studies that control for sub-surface soil features such as bulk density, micro- and macropores, and biological crust structure. Unlike the mixed effects of biological crusts on infiltration and runoff among regions, almost all studies show that biological crusts reduce sediment production, regardless of crust or dryland type.Copyright © 2006 John Wiley & Sons, Ltd. [source] Modelling the hydrology of a catchment using a distributed and a semi-distributed modelHYDROLOGICAL PROCESSES, Issue 3 2005Ahmed Abu El-Nasr Abstract Various hydrological models exist that describe the phases in the hydrologic cycle either in an empirical, semi-mechanistic or fully mechanistic way. The way and level of detail for the different processes of the hydrologic cycle that needs to be described depends on the objective, the application and the availability of data. In this study the performance of two different models, the fully distributed MIKE SHE model and the semi-distributed SWAT model, was assessed. The aim of the comparative study was to examine if both models are equally able to describe the different phases in the hydrologic cycle of a catchment, given the availability of hydrologic data in the catchment. For the comparison, historic data of the Jeker river basin, situated in the loamy belt region of Belgium, was used. The size of the catchment is 465 km2. The landscape is rolling, the dominant land use is farmland, and the soils vary from sandy-loam to clay-loam. The daily data of a continuous period of 6 years were used for the calibration and validation of both models. The results were obtained by comparing the performance of the two models using a qualitative (graphical) and quantitative (statistical) assessment, such as graphical representation of the observed and simulated river discharge, performance indices, the hydrograph maxima, the baseflow minima, the total accumulated volumes and the extreme value distribution of river flow data. The analysis revealed that both models are able to simulate the hydrology of the catchment in an acceptable way. The calibration results of the two tested models, although they differ in concept and spatial distribution, are quite similar. However, the MIKE SHE model predicts slightly better the overall variation of the river flow. Copyright © 2005 John Wiley & Sons, Ltd. [source] Characterization of soil moisture conditions at temporal scales from a few days to annualHYDROLOGICAL PROCESSES, Issue 17 2004Nicolas Lauzon Abstract This work proposes the analysis of soil moisture conditions based on the use of two recently developed descriptive techniques: (1) wavelet analysis and (2) self-organizing mapping through Kohonen neural networks. This analysis is applied to soil moisture profiles as well as supporting data, i.e. precipitation, temperature and flow observations, from an experimental site in the Orgeval watershed in France. With wavelet analysis and self-organizing mapping, a comprehensive description of the structure of soil moisture profile, its evolution over time, and how it relates to observations of precipitation, temperature and flow can be obtained. Soil moisture conditions, particularly in the Orgeval watershed, are an important feature of the hydrologic cycle. There might be a significant advantage to consider soil moisture information in a variety of hydrologic models, such as streamflow models often employed in simulation and prediction modes for operational purposes, and the analysis performed here provides some avenues leading to the consideration of this information. Copyright © 2004 John Wiley & Sons, Ltd. [source] ,Distribution of oxygen-18 and deuterium in river waters across the United StatesHYDROLOGICAL PROCESSES, Issue 7 2001Carol Kendall Abstract Reconstruction of continental palaeoclimate and palaeohydrology is currently hampered by limited information about isotopic patterns in the modern hydrologic cycle. To remedy this situation and to provide baseline data for other isotope hydrology studies, more than 4800, depth- and width-integrated, stream samples from 391 selected sites within the USGS National Stream Quality Accounting Network (NASQAN) and Hydrologic Benchmark Network (HBN) were analysed for ,18O and ,2H (http://water.usgs.gov/pubs/ofr/ofr00-160/pdf/ofr00-160.pdf). Each site was sampled bimonthly or quarterly for 2·5 to 3 years between 1984 and 1987. The ability of this dataset to serve as a proxy for the isotopic composition of modern precipitation in the USA is supported by the excellent agreement between the river dataset and the isotopic compositions of adjacent precipitation monitoring sites, the strong spatial coherence of the distributions of ,18O and ,2H, the good correlations of the isotopic compositions with climatic parameters, and the good agreement between the ,national' meteoric water line (MWL) generated from unweighted analyses of samples from the 48 contiguous states of ,2H=8·11,18O+8·99 (r2=0·98) and the unweighted global MWL of sites from the Global Network for Isotopes in Precipitation (GNIP) of the International Atomic Energy Agency and the World Meteorological Organization (WMO) of ,2H=8·17,18O+10·35. The national MWL is composed of water samples that arise in diverse local conditions where the local meteoric water lines (LMWLs) usually have much lower slopes. Adjacent sites often have similar LMWLs, allowing the datasets to be combined into regional MWLs. The slopes of regional MWLs probably reflect the humidity of the local air mass, which imparts a distinctive evaporative isotopic signature to rainfall and hence to stream samples. Deuterium excess values range from 6 to 15, in the eastern half of the USA, along the northwest coast and on the Colorado Plateau. In the rest of the USA, these values range from ,2 to 6,, with strong spatial correlations with regional aridity. The river samples have successfully integrated the spatial variability in the meteorological cycle and provide the best available dataset on the spatial distributions of ,18O and ,2H values of meteoric waters in the USA. Published in 2001 by John Wiley & Sons, Ltd. [source] Hydrologic Connectivity and the Contribution of Stream Headwaters to Ecological Integrity at Regional Scales,JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 1 2007Mary C. Freeman Abstract:, Cumulatively, headwater streams contribute to maintaining hydrologic connectivity and ecosystem integrity at regional scales. Hydrologic connectivity is the water-mediated transport of matter, energy and organisms within or between elements of the hydrologic cycle. Headwater streams compose over two-thirds of total stream length in a typical river drainage and directly connect the upland and riparian landscape to the rest of the stream ecosystem. Altering headwater streams, e.g., by channelization, diversion through pipes, impoundment and burial, modifies fluxes between uplands and downstream river segments and eliminates distinctive habitats. The large-scale ecological effects of altering headwaters are amplified by land uses that alter runoff and nutrient loads to streams, and by widespread dam construction on larger rivers (which frequently leaves free-flowing upstream portions of river systems essential to sustaining aquatic biodiversity). We discuss three examples of large-scale consequences of cumulative headwater alteration. Downstream eutrophication and coastal hypoxia result, in part, from agricultural practices that alter headwaters and wetlands while increasing nutrient runoff. Extensive headwater alteration is also expected to lower secondary productivity of river systems by reducing stream-system length and trophic subsidies to downstream river segments, affecting aquatic communities and terrestrial wildlife that utilize aquatic resources. Reduced viability of freshwater biota may occur with cumulative headwater alteration, including for species that occupy a range of stream sizes but for which headwater streams diversify the network of interconnected populations or enhance survival for particular life stages. Developing a more predictive understanding of ecological patterns that may emerge on regional scales as a result of headwater alterations will require studies focused on components and pathways that connect headwaters to river, coastal and terrestrial ecosystems. Linkages between headwaters and downstream ecosystems cannot be discounted when addressing large-scale issues such as hypoxia in the Gulf of Mexico and global losses of biodiversity. [source] Effects of Rainfall and Ground-Water Pumping on Streamflow in M,kaha, O'ahu, Hawai'i,JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 1 2007Alan Mair Abstract:, Land-use/land-cover changes in M,kaha valley have included the development of agriculture, residential dwellings, golf courses, potable water supply facilities, and the introduction of alien species. The impact of these changes on surface water and ground water resources in the valley is of concern. In this study, streamflow, rainfall, and ground-water pumping data for the upper part of the M,kaha valley watershed were evaluated to identify corresponding trends and relationships. The results of this study indicate that streamflow declined during the ground-water pumping period. Mean and median annual streamflow have declined by 42% (135 mm) and 56% (175 mm), respectively, and the mean number of dry stream days per year has increased from 8 to 125. Rainfall across the study area appears to have also declined though it is not clear whether the reduction in rainfall is responsible for all or part of the observed streamflow decline. Mean annual rainfall at one location in the study area declined by 14% (179 mm) and increased by 2% (48 mm) at a second location. Further study is needed to assess the effect of ground-water pumping and to characterize the hydrologic cycle with respect to rainfall, infiltration, ground-water recharge and flow in the study area, and stream base flow and storm flow. [source] The impacts of Miscanthus×giganteus production on the Midwest US hydrologic cycleGCB BIOENERGY, Issue 4 2010ANDY VANLOOCKE Abstract Perennial grasses are being considered as candidates for biofuel feedstocks to provide an alternative energy source to fossil fuels. Miscanthus×giganteus (miscanthus), in particular, is a grass that is predicted to provide more energy per sown area than corn ethanol and reduce net carbon dioxide emissions by increasing the storage of carbon belowground. Miscanthus uses more water than Zea mays (maize), mainly as a result of a longer growing season and higher productivity. Conversion of current land use for miscanthus production will likely disrupt regional hydrologic cycles, yet the magnitude, timing, and spatial distribution of effects are unknown. Here, we show the effects of five different scenarios of miscanthus production on the simulated Midwest US hydrologic cycle. Given the same historic precipitation observations, our ecosystem model simulation results show that on an annual basis miscanthus uses more water than the ecosystems it will likely replace. The actual timing and magnitude of increased water loss to the atmosphere depends on location; however, substantial increases only occur when miscanthus fraction cover exceeds 25% in dry regions and 50% in nearly all of the Midwest. Our results delineate where large-scale land use conversion to perennial biofuel grasses might deplete soil water resources. Given the fact that some watersheds within the Midwest already have depleted water resources, we expect our results to inform decisions on where to grow perennial grasses for biofuel use to ensure sustainability of energy and water resources, and to minimize the potential for deleterious effects to water quantity and quality. [source] Global perspective on hydrology, water balance, and water resources management in arid basinsHYDROLOGICAL PROCESSES, Issue 2 2010Yanjun Shen Abstract Arid and semiarid regions comprise a large part of the world's terrestrial area and are home to hundreds of millions of people. Water resources in arid regions are rare and critical to society and to ecosystems. The hydrologic cycle in arid and semiarid regions has been greatly altered due to long-term human exploitation. Under conditions of global warming, water resources in these regions are expected to be more unstable and ecosystems likely will suffer from severe water stress. In the current special issue contributed to understanding ecohydrologic processes and water-related problems in arid regions of western China, this paper provides a global perspective on the hydrology and water balance of six major arid basins of the world. A number of global datasets, including the state-of-the-art ensemble simulation of land surface models by GSWP2 (Global Soil Wetness Project II, a project by GEWEX), were used to address the water balance terms in the world's major hydroclimatic regions. The common characteristics of hydrologic cycles and water balance in arid basins are as follows: strong evapotranspiration characterizes the hydrological cycle in arid basins; and in water use sectors irrigation consumes a large amount of water, resulting in degradation of native vegetation. From the ecohydrology viewpoint, a comprehensive study of hydrological and ecological processes of water utilization in arid basins is urgently needed. Copyright © 2009 John Wiley & Sons, Ltd. [source] The potential roles of biological soil crusts in dryland hydrologic cyclesHYDROLOGICAL PROCESSES, Issue 15 2006Jayne Belnap Abstract Biological soil crusts (BSCs) are the dominant living cover in many drylands of the world. They possess many features that can influence different aspects of local hydrologic cycles, including soil porosity, absorptivity, roughness, aggregate stability, texture, pore formation, and water retention. The influence of biological soil crusts on these factors depends on their internal and external structure, which varies with climate, soil, and disturbance history. This paper presents the different types of biological soil crusts, discusses how crust type likely influences various aspects of the hydrologic cycle, and reviews what is known and not known about the influence of biological crusts on sediment production and water infiltration versus runoff in various drylands around the world. Most studies examining the effect of biological soil crusts on local hydrology are done by comparing undisturbed sites with those recently disturbed by the researchers. Unfortunately, this greatly complicates interpretation of the results. Applied disturbances alter many soil features such as soil texture, roughness, aggregate stability, physical crusting, porosity, and bulk density in ways that would not necessarily be the same if crusts were not naturally present. Combined, these studies show little agreement on how biological crusts affect water infiltration or runoff. However, when studies are separated by biological crust type and utilize naturally occurring differences among these types, results indicate that biological crusts in hyperarid regions reduce infiltration and increase runoff, have mixed effects in arid regions, and increase infiltration and reduce runoff in semiarid cool and cold drylands. However, more studies are needed before broad generalizations can be made on how biological crusts affect infiltration and runoff. We especially need studies that control for sub-surface soil features such as bulk density, micro- and macropores, and biological crust structure. Unlike the mixed effects of biological crusts on infiltration and runoff among regions, almost all studies show that biological crusts reduce sediment production, regardless of crust or dryland type.Copyright © 2006 John Wiley & Sons, Ltd. [source] |