Hydrogen-bonded Complexes (hydrogen-bonded + complex)

Distribution by Scientific Domains


Selected Abstracts


Photochemistry of Salicylaldoxime in Solid Argon: An Experimental and Theoretical Study

EUROPEAN JOURNAL OF ORGANIC CHEMISTRY, Issue 27 2010
Joanna Grzegorzek
Abstract The photochemistry of salicylaldoxime in solid argon has been investigated by FTIR spectroscopy and DFT calculations. The salicylaldoxime molecule trapped in the matrix from the vapor above the solid sample has the most stable syn1 conformation with an intramolecular hydrogen bond. Irradiation (, > 320 nm) leads to conversion of the syn1 conformer into the syn3 one, in which the C(H)NOH and (C)OH groups are rotated around the C,C and C,O bonds, respectively, and the intramolecular hydrogen bond is broken. The photochemistry of syn3 involves three possible routes: (i) conversion of syn3 into anti2 conformer, this process requires rearrangement of the NOH group with respect to the C=N bond; (ii) photodissociation of salicylaldoxime into 2-cyanophenol and water, which form a hydrogen-bonded complex; and (iii) regeneration of the syn1 conformer. The third route is a very small contribution to the overall process. The study performed with [D2]salicylaldoxime indicates that the dehydration reaction of salicylaldoxime involves cleavage of the N,O bond and formation of OH and Ph(OH)C(H)N radicals in the first step. Then, the OH radical abstracts a hydrogen atom from the CH group to form 2-cyanophenol and water molecules. When the sample is exposed to the full output of the mercury lamp the 2-cyanophenol complex with water becomes the dominating product. [source]


Ultrafast Relaxation Dynamics of the Excited States of 1-Amino- and 1-(N,N -Dimethylamino)-fluoren-9-ones

CHEMPHYSCHEM, Issue 17 2009
Mahendra Varne
Abstract The dynamics of the excited states of 1-aminofluoren-9-one (1AF) and 1-(N,N -dimethylamino)-fluoren-9-one (1DMAF) are investigated by using steady-state absorption and fluorescence as well as subpicosecond time-resolved absorption spectroscopic techniques. Following photoexcitation of 1AF, which exists in the intramolecular hydrogen-bonded form in aprotic solvents, the excited-state intramolecular proton-transfer reaction is the only relaxation process observed in the excited singlet (S1) state. However, in protic solvents, the intramolecular hydrogen bond is disrupted in the excited state and an intermolecular hydrogen bond is formed with the solvent leading to reorganization of the hydrogen-bond network structure of the solvent. The latter takes place in the timescale of the process of solvation dynamics. In the case of 1DMAF, the main relaxation pathway for the locally excited singlet, S1(LE), or S1(ICT) state is the configurational relaxation, via nearly barrierless twisting of the dimethylamino group to form the twisted intramolecular charge-transfer, S1(TICT), state. A crossing between the excited-state and ground-state potential energy curves is responsible for the fast, radiationless deactivation and nonemissive character of the S1(TICT) state in polar solvents, both aprotic and protic. However, in viscous but strong hydrogen-bond-donating solvents, such as ethylene glycol and glycerol, crossing between the potential energy surfaces for the ground electronic state and the hydrogen-bonded complex formed between the S1(TICT) state and the solvent is possibly avoided and the hydrogen-bonded complex is weakly emissive. [source]


Torsional Barriers in Aromatic Molecular Clusters as Probe of the Electronic Properties of the Chromophore

CHEMPHYSCHEM, Issue 11 2004
Christoph Jacoby Dr.
Abstract We present a computer program that is capable of fitting n -fold torsional barriers Vn(n=2,6) and torsional constants F simultaneously to high- and low-resolution spectroscopic data of different isotopomeric internal rotors. The program has been utilized to fit independently barriers and torsional constants for both electronic states of several aromatic clusters. The constant F of the ammonia moiety in the phenol,ammonia cluster is shown to decrease upon electronic excitation, thus imaging the formation of a hydrogen-bonded complex between the phenoxy radical and the NH4 radical in the excited state. In contrast, for the naphthol,ammonia 1:1 clusters no change of F of ammonia could be found. For phenol,methanol cluster we found a decrease of F upon excitation which points to a stronger hydrogen bond between phenol and methanol in the excited state. A strong reduction of the torsional barrier upon excitation points to the formation of a methoxonium radical in a similar photoreaction as in phenol,ammonia cluster. For the phenol,water system we postulate the same mechanism, a photoreaction, which leads to a translocated hydrogen atom in the S1 state what can be deduced from the change of the torsional constant upon electronic excitation. [source]


Chiral discrimination in hydrogen-bonded complexes of 2-methylol oxirane with hydrogen peroxide

INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, Issue 5 2009
Guiqiu Zhang
Abstract A systematic quantum chemical study reveals the effects of chirality on the intermolecular interactions between two chiral molecules bound by hydrogen bonds. The methods used are second-order Møller,Plesset perturbation theory (MP2) with the 6-311++g(d,p) basis set. Complexes via the OH···O hydrogen bond formed between the chiral 2-methylol oxirane (S) and chiral HOOH (P and M) molecules have been investigated, which lead to four diastereomeric complexes. The nomenclature of the complexes used in this article is enantiomeric configuration sign corresponding to English letters. Such as: sm, sp. The relative positions of the methylol group and the hydrogen peroxide are designated as syn (same side) and anti (opposite side). The largest chirodiastaltic energy was ,Echir = ,1.329 kcal mol,1 [9% of the counterpoise correct average binding energy De(corr)] between the sm-syn and sp-anti in favor of sm-syn. The largest diastereofacial energy was ,1.428 kcal mol,1 between sm-syn and sm-anti in favor of sm-syn. To take into account solvents effect, the polarizable continuum model (PCM) method has been used to evaluate the chirodiastaltic energies, and diastereofacial energies of the 2-methylol oxirane···HOOH complexes. The chiral 2,3-dimethylol oxirane (S, S) is C2 symmetry which offers two identical faces. Hence, the chirodiastaltic energy is identical to the diastereomeric energy, and is ,Echir = 0.563 kcal mol,1 or 5.3% of the De(corr) in favor of s,s-p. The optimized structures, interaction energies, and chirodiastaltic energies for various isomers were estimated. The harmonic frequencies, IR intensities, rotational constants, and dipole moments were also reported. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2009 [source]


Theoretical study of hydrogen-bonded complexes of benzene with hydrides of astrochemical interest

INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, Issue 3 2008
M. Nait Achour
Abstract Post Hartree,Fock and DFT calculations have been performed for studying the possibility for a benzene support to be linked to various hydrides through a quasi Bz···HA bond. Interaction energy of compounds, including CH bonds (CH4, CH3F, CH2O, CHN, CHNO), NH bonds (NH3, NH2F, NHC, NHCO, NH3O), and OH bonds (OH2, OHF, NCOH), were evaluated, taking basis set superposition error (BSSE) and zero point vibrational energy (ZPVE) corrections into account. Numerical convergence of results with respect to the ingredients included at different steps of theory (basis set, DFT functionals, correlation treatments, geometry optimization) was tested mainly on the example of the water adduct and, for comparison, the Bz···H3O+ system containing a cation instead of a neutral molecule. A rather large range of adsorption energies is obtained, from about 1 kcal/mol for methane to more than 6 kcal/mol for cyanic acid, according to the acidic character of the adsorbed species in each family of Bz···HA bonds. Some consequences for astrophysical problems involving PAHs in the interstellar medium are pointed out. © 2007 Wiley Periodicals, Inc. Int J Quantum Chem, 2008 [source]


Hydrogen-bonding effects on electronic g -tensors of semiquinone anion radicals: Relativistic density functional investigation

INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, Issue 4-5 2002
Konstantin M. Neyman
Abstract We report results of systematic g -tensor calculations of hydrogen-bonded complexes of two benchmark semiquinone anion radicals, 1,4 -benzoquinone and tetramethyl- 1,4 -benzoquinone (duroquinone), with water and methanol molecules. The calculations have been carried out with the help of a recently developed g -tensor module that is based on a relativistic density functional method that takes spin,orbit interaction self-consistently into account. We demonstrate the applicability of this new computational scheme to describe quantitatively delicate effects of hydrogen bonding on electronic g -tensor values. Also, we explored general trends of how g -tensors depend on the structure and stoichiometry of hydrogen-bonded semiquinone complexes. Complexes exhibiting one hydrogen bond per oxygen atom of the quinones with a linear arrangement of the CO , H moieties were shown to feature g-shifts induced by these hydrogen bonds that are in close agreement with measured electron paramagnetic resonance data. Based on deviations of calculated and measured g-components, we classify all other model complexes studied as less probable under the experimental conditions. © 2002 Wiley Periodicals, Inc. Int J Quantum Chem, 2002 [source]


pH-Switchable Complexation between Double Hydrophilic Heteroarm Star Copolymers and a Cationic Block Polyelectrolyte

MACROMOLECULAR CHEMISTRY AND PHYSICS, Issue 7 2008
Zhishen Ge
Abstract Double hydrophilic heteroarm star copolymers of poly(methacrylic acid) (PMAA) and poly(ethylene oxide) (PEO) were synthesized via atom-transfer radical polymerization (ATRP) using the "in-out" method. The synthesis consisted of three steps. Namely, ATRP was applied to the preparation of a star macroinitiator with PEO arms and a cross-linked core resulting from the polymerization of divinylbenzene (DVB) in the first step, chain extension with tert -butyl methacrylate (tBMA) under ATRP conditions, and subsequent hydrolysis of the tert -butyl groups afforded (PEO)n -PDVB-(PMAA)n heteroarm star copolymers with a cross-linked microgel core. This novel type of double hydrophilic heteroarm star copolymer can be considered as unimolecular micelles with hybrid coronas. The star copolymers exhibited pH-dependent solubility in water, being soluble at high pH and insoluble at low pH, due to the formation of hydrogen-bonded complexes between the PEO and PMAA arms. A mixed solution of the heteroarm star copolymer and a PEO- b -PQDMA diblock copolymer, where PQDMA is poly(2-(dimethylamino)ethyl methacrylate) fully quaternized with methyl iodide, remained stable in the whole pH range, and exhibited an intriguing pH-switchable complexation behavior accompanied with structural rearrangement. [source]


X-ray crystallographic structures of enamine and amine Schiff bases of pyridoxal and its 1:1 hydrogen-bonded complexes with benzoic acid derivatives: evidence for coupled inter- and intramolecular proton transfer

ACTA CRYSTALLOGRAPHICA SECTION B, Issue 3 2006
Shasad Sharif
Crystal structures of Schiff bases containing pyridoxal (PL), N -(pyridoxylidene)-tolylamine, C15H16N2O2 (I), N -(pyridox­ylidene)-methylamine, C9H12N2O2 (III), and their 1:1 adduct with 2-nitrobenzoic acid, (I)+ C7H4NO (II), and 4-nitrobenzoic acid, (III)+ C7H4NO (IV), serve as models for the coenzyme pyridoxal-5,-phosphate (PLP) in its PLP-dependent enzymes. These models allow the study of the intramolecular OHN hydrogen bond of PL/PLP Schiff bases and the H-acceptor properties of their pyridine rings. The free base (I) forms hydrogen-bonded chains involving the hydroxyl side groups and the rings of adjacent molecules, whereas (III) forms related hydrogen-bonded cyclic dimers. The adducts (II)/(IV) consist of 1:1 hydrogen-bonded complexes, exhibiting strong intermolecular bonds between the carboxylic groups of the acids and the pyridine rings of (I)/(III). In conclusion, the proton in the intramolecular O,H,N hydrogen bond of (I)/(III) is located close to oxygen (enolamine form). The added acids protonate the pyridine ring in (II)/(IV), but only in the latter case does this protonation lead to a shift of the intramolecular proton towards the nitrogen (ketoimine form). All crystallographic structures were observed in the open form. In contrast, the formation of the pyridinium salt by dissolving (IV) leads to the cyclic aminal form. [source]


New pseudopolymorphs of 5-fluorocytosine

ACTA CRYSTALLOGRAPHICA SECTION C, Issue 11 2009
Maya Tutughamiarso
In order to better understand the interaction between the pharmaceutically active compound 5-fluorocytosine [4-amino-5-fluoropyrimidin-2(1H)-one] and its receptor, hydrogen-bonded complexes with structurally similar bonding patterns have been investigated. During the cocrystallization screening, three new pseudopolymorphs of 5-fluorocytosine were obtained, namely 5-fluorocytosine dimethyl sulfoxide solvate, C4H4FN3O·C2H6OS, (I), 5-fluorocytosine dimethylacetamide hemisolvate, C4H4FN3O·0.5C4H9NO, (II), and 5-fluorocytosine hemihydrate, C4H4FN3O·0.5H2O, (III). Similar hydrogen-bond patterns are observed in all three crystal structures. The 5-fluorocytosine molecules form ribbons with repeated R22(8) dimer interactions. These dimers are stabilized by N,H...N and N,H...O hydrogen bonds. The solvent molecules adopt similar positions with respect to 5-fluorocytosine. Depending on the hydrogen bonds formed by the solvent, the 5-fluorocytosine ribbons form layers or tubes. A database study was carried out to compare the hydrogen-bond pattern of compounds (I),(III) with those of other (pseudo)polymorphs of 5-fluorocytosine. [source]


Structure and Dynamics of Water Confined in Dimethyl Sulfoxide

CHEMPHYSCHEM, Issue 1 2006
A. Wulf
Abstract We study the structure and dynamics of hydrogen-bonded complexes of H2O/D2O and dimethyl sulfoxide (DMSO) by infrared spectroscopy, NMR spectroscopy and ab initio calculations. We find that single water molecules occur in two configurations. For one half of the water monomers both OH/OD groups form strong hydrogen bonds to DMSO molecules, whereas for the other half only one of the two OH/OD groups is hydrogen-bonded to a solvent molecule. The H-bond strength between water and DMSO is in the order of that in bulk water. NMR deuteron relaxation rates and calculated deuteron quadrupole coupling constants yield rotational correlation times of water. The molecular reorientation of water monomers in DMSO is two-and-a-half times slower than in bulk water. This result can be explained by local structure behavior. [source]


Energy Transfer in Single Hydrogen-Bonded Water Molecules

CHEMPHYSCHEM, Issue 6 2005
Huib J. Bakker Prof.
Abstract We study the structure and dynamics of hydrogen-bonded complexes of H2O/HDO and acetone dissolved in carbon tetrachloride by probing the response of the OH stretching vibrations with linear mid-infrared spectroscopy and femtosecond mid-infrared pump,probe spectroscopy. We find that the hydrogen bonds in these complexes break and reform with a characteristic time scale of ,1 ps. These hydrogen-bond dynamics are observed to play an important role in the equilibration of vibrational energy over the two OH groups of the H2O molecule. For both H2O and HDO, the OH stretching vibrational excitation relaxes with a time constant of 6.3±0.3 ps, and the molecular reorientation has a time constant of 6±1 ps. [source]