Hydrogel Scaffolds (hydrogel + scaffold)

Distribution by Scientific Domains
Distribution within Polymers and Materials Science


Selected Abstracts


Direct-Write Assembly of 3D Hydrogel Scaffolds for Guided Cell Growth

ADVANCED MATERIALS, Issue 23 2009
Robert A. Barry III
Planar and 3D hydrogel scaffolds are patterned via direct-write assembly of hydrogel-based inks. Through simultaneous ink writing and UV polymerization, both 1D and 3D microperiodic scaffolds are created. 3T3 murine fibroblasts are seeded onto the scaffolds and their process development is observed using fluorescence microscopy. [source]


Multifunctional Nanobiomaterials for Neural Interfaces

ADVANCED FUNCTIONAL MATERIALS, Issue 4 2009
Mohammad Reza Abidian
Abstract Neural electrodes are designed to interface with the nervous system and provide control signals for neural prostheses. However, robust and reliable chronic recording and stimulation remains a challenge for neural electrodes. Here, a novel method for the fabrication of soft, low impedance, high charge density, and controlled releasing nanobiomaterials that can be used for the surface modification of neural microelectrodes to stabilize the electrode/tissue interface is reported. The fabrication process includes electrospinning of anti-inflammatory drug-incorporated biodegradable nanofibers, encapsulation of these nanofibers by an alginate hydrogel layer, followed by electrochemical polymerization of conducting polymers around the electrospun drug-loaded nanofibers to form nanotubes and within the alginate hydrogel scaffold to form cloud-like nanostructures. The three-dimensional conducting polymer nanostructures significantly decrease the electrode impedance and increase the charge capacity density. Dexamethasone release profiles show that the alginate hydrogel coating slows down the release of the drug, significantly reducing the burst effect. These multifunctional materials are expected to be of interest for a variety of electrode/tissue interfaces in biomedical devices. [source]


Synthesis and characterization of hydrogels containing biodegradable polymers

POLYMER INTERNATIONAL, Issue 7 2008
Adina Cretu
Abstract BACKGROUND: Amphiphilic block and graft copolymers constitute a very interesting class of polymers with potential for biomedical applications, due to their special characteristics, which derive from the combination of properties of hydrophilic and hydrophobic moieties. In this work, the synthesis and biodegradation of poly(2-hydroxyethyl methacrylate)- graft -poly(L -lactide) are studied. RESULTS: The graft copolymers were synthesized using the macromonomer technique. In a first step, methacryloyl-terminated poly(L -lactide) macromonomers were synthesized in a wide molecular weight range using different catalysts. Subsequently, these macromonomers were copolymerized with 2-hydroxyethyl methacrylate in order to obtain a graft copolymer. These new materials resemble hydrogel scaffolds with a biodegradable component. The biodegradation was studied in hydrolytic and enzymatic environments. The influence of different parameters (molecular weight, crystallinity, ratio between hydrophilic and hydrophobic components) on the degradation rate was investigated. CONCLUSION: Based on this study it will be possible to tailor the release properties of biodegradable materials. In addition, the materials will show good biocompatibility due to the hydrophilic poly(2-hydroxyethyl methacrylate) hydrogel scaffold. This kind of material has potential for many applications, like controlled drug-delivery systems or biodegradable implants. Copyright © 2008 Society of Chemical Industry [source]


Direct-Write Assembly of 3D Hydrogel Scaffolds for Guided Cell Growth

ADVANCED MATERIALS, Issue 23 2009
Robert A. Barry III
Planar and 3D hydrogel scaffolds are patterned via direct-write assembly of hydrogel-based inks. Through simultaneous ink writing and UV polymerization, both 1D and 3D microperiodic scaffolds are created. 3T3 murine fibroblasts are seeded onto the scaffolds and their process development is observed using fluorescence microscopy. [source]


Dendritic macromers for hydrogel formation: Tailored materials for ophthalmic, orthopedic, and biotech applications

JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 2 2008
Mark W. Grinstaff
Abstract Dendritic macromolecules are well-defined highly branched macromolecules synthesized via a divergent or convergent approach. A salient feature of the macromolecules described herein, and a goal of our research effort, is to prepare dendritic macromolecules suitable for in vitro and in vivo use by focusing on biocompatible building blocks and biodegradable linkages. These dendritic macromolecules can be subsequently crosslinked to form hydrogels using a photochemical acrylate-based or a chemical ligation strategy. The properties,mechanical, swelling, degradation, and so forth,of the hydrogels can be tuned by altering the composition, crosslinking chemistry, wt %, generation number and so forth. The utility and diverse applicability is demonstrated through successful use of these hydrogels in three unique applications: hydrogel adhesives for repairing corneal wounds, hydrogel scaffolds for cartilage tissue engineering, and hydrogel reaction chambers for high throughput screening of molecular recognition events. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 383,400, 2008. [source]


Two and three-dimensional gene transfer from enzymatically degradable hydrogel scaffolds

MICROSCOPY RESEARCH AND TECHNIQUE, Issue 9 2010
Yuguo Lei
Abstract The ability to genetically modify mesenchymal stem cells (MSCs) seeded inside synthetic hydrogel scaffolds would offer an alternative approach to guide MSC differentiation. In this report, we explored gene transfer to MSCs seeded on top or inside matrix metalloproteinase (MMP) degradable hydrogels that were loaded with DNA/poly(ethylene imine) (PEI) polyplexes. DNA/PEI polyplexes were encapsulated inside poly(ethylene glycol) (PEG) hydrogels crosslinked with MMP degradable peptides via Michael Addition chemistry. Gene transfer was visualized and quantified through using a vector encoding for green fluorescent protein and luciferase. We found that gene transfer to MSCs was possible for cells seeded both in two and three dimensions. The amount of luciferase expression was similar for cells seeded in two and three dimensions even though the number of cells in three dimensions is significantly higher, indicating that gene transfer to cells seeded in two dimensions is more efficient than for cells seeded in three dimensions. The use of hydrogel scaffolds that allow cellular infiltration to deliver DNA may result in long-lasting signals in vivo, which are essential for the regeneration of functional tissues. Microsc. Res. Tech. 73:910,917, 2010. © 2010 Wiley-Liss, Inc. [source]


Synthesis and characterization of hydrogels containing biodegradable polymers

POLYMER INTERNATIONAL, Issue 7 2008
Adina Cretu
Abstract BACKGROUND: Amphiphilic block and graft copolymers constitute a very interesting class of polymers with potential for biomedical applications, due to their special characteristics, which derive from the combination of properties of hydrophilic and hydrophobic moieties. In this work, the synthesis and biodegradation of poly(2-hydroxyethyl methacrylate)- graft -poly(L -lactide) are studied. RESULTS: The graft copolymers were synthesized using the macromonomer technique. In a first step, methacryloyl-terminated poly(L -lactide) macromonomers were synthesized in a wide molecular weight range using different catalysts. Subsequently, these macromonomers were copolymerized with 2-hydroxyethyl methacrylate in order to obtain a graft copolymer. These new materials resemble hydrogel scaffolds with a biodegradable component. The biodegradation was studied in hydrolytic and enzymatic environments. The influence of different parameters (molecular weight, crystallinity, ratio between hydrophilic and hydrophobic components) on the degradation rate was investigated. CONCLUSION: Based on this study it will be possible to tailor the release properties of biodegradable materials. In addition, the materials will show good biocompatibility due to the hydrophilic poly(2-hydroxyethyl methacrylate) hydrogel scaffold. This kind of material has potential for many applications, like controlled drug-delivery systems or biodegradable implants. Copyright © 2008 Society of Chemical Industry [source]