Home About us Contact | |||
Hydrocarbon Products (hydrocarbon + products)
Selected AbstractsNO emission characteristics in counterflow diffusion flame of blended fuel of H2/CO2/ArINTERNATIONAL JOURNAL OF ENERGY RESEARCH, Issue 3 2002Jeong Park Abstract Flame structure and NO emission characteristics in counterflow diffusion flame of blended fuel of H2/CO2/Ar have been numerically simulated with detailed chemistry. The combination of H2, CO2 and Ar as fuel is selected to clearly display the contribution of hydrocarbon products to flame structure and NO emission characteristics due to the breakdown of CO2. A radiative heat loss term is involved to correctly describe the flame dynamics especially at low strain rates. The detailed chemistry adopts the reaction mechanism of GRI 2.11, which consists of 49 species and 279 elementary reactions. All mechanisms including thermal, NO2, N2O and Fenimore are taken into account to separately evaluate the effects of CO2 addition on NO emission characteristics. The increase of added CO2 quantity causes flame temperature to fall since at high strain rates a diluent effect is prevailing and at low strain rates the breakdown of CO2 produces relatively populous hydrocarbon products and thus the existence of hydrocarbon products inhibits chain branching. It is also found that the contribution of NO production by N2O and NO2 mechanisms are negligible and that thermal mechanism is concentrated on only the reaction zone. As strain rate and CO2 quantity increase, NO production is remarkably augmented. Copyright © 2002 John Wiley & Sons, Ltd. [source] Millisecond catalytic reforming of monoaromatics over noble metalsAICHE JOURNAL, Issue 4 2010C. M. Balonek Abstract The millisecond autothermal reforming of benzene, toluene, ethylbenzene, cumene, and styrene were independently studied over five noble metal-based catalysts: Pt, Rh, Rh/,-Al2O3, Rh,Ce, and Rh,Ce/,-Al2O3, as a function of carbon-to-oxygen feed ratio. The Rh,Ce/,-Al2O3 catalyst exhibited the highest feedstock conversion as well as selectivities to both synthesis gas and hydrocarbon products (lowest selectivities to H2O and CO2). Experimental results demonstrate a high stability of aromatic rings within the reactor system. Benzene and toluene seem to react primarily heterogeneously, producing only syngas and combustion products. Ethylbenzene and cumene behaved similarly, with higher conversions than benzene and toluene, and high product selectivity to styrene, likely due to homogeneous reactions involving their alkyl groups. Styrene exhibited low conversions over Rh,Ce/,-Al2O3, emphasizing the stability of styrene in the reactor system. © 2009 American Institute of Chemical Engineers AIChE J, 2009 [source] Fischer-Tropsch synthesis product grade optimization in a fluidized bed reactorAICHE JOURNAL, Issue 8 2006Fabiano A. N. Fernandes Abstract Fischer-Tropsch synthesis is an important chemical process for the production of liquid fuels and olefins. In recent years, the abundant availability of natural gas and the increasing demand of olefins, gasoline, diesel and waxes have led to a high interest in further developing this process. A mathematical model of a fluidized-bed reactor used for syngas polymerization was developed and the carbon monoxide polymerization was studied from a modeling point of view. Simulation results show that several parameters affect syngas conversion and carbon product distribution, such as operating pressure, superficial gas velocity, bed porosity, and syngas composition. Optimization of liquid hydrocarbon products was done and the best operating conditions for their production were found for an iron catalyst that produces hydrocarbon chains according to a dual mechanism theory. © 2006 American Institute of Chemical Engineers AIChE J, 2006 [source] Study on surface morphology and selectivity of precipitated iron catalysts of FTSASIA-PACIFIC JOURNAL OF CHEMICAL ENGINEERING, Issue 5 2009Wang Xingjun Abstract The precipitated iron catalyst was prepared by co-precipitation. The surface morphology of the catalyst was investigated under different reduction conditions by SEM (S-250, USA). Under H2 -reduction, the surface morphology of the catalyst had the obvious changes, which the diameter reduced, adhered together, came into being wads considered as a group. But the surface morphology of the catalyst had almost no change under CO reduction. The crystal structure of the catalyst was studied under different reduction conditions by X-ray diffraction (XRD) (Rigaku D/max, Japanese). It was found that the catalyst was reduced completely with H2, but it was reduced partly with CO. The crystal structure of the catalyst converted into the metallic phase with H2 reduction. However, most of the iron converted into iron oxide (Fe3O4) with CO reduction. And the predominant phase in a sample of a mature catalyst is ,-Fe5C2, which is the active phase in the Fischer-Tropsch synthesis (FTS). The experimental results showed that CO conversion and H2 conversion increase with the change of reaction temperature from 260 to 300 °C, under the conditions of pressure P = 2.6 MPa, space velocity = 0.86 Nl h,1 g-Fe,1, n(H2)/n(CO) = 2/3, and most of the hydrocarbon products are C5,11 which hold half of the hydrocarbon products. The next content is C2,4 which holds the quarter of hydrocarbon products. Then it is C12+, which is equal to 18%. And the last is C1, which is equal to 7%. Copyright © 2009 Curtin University of Technology and John Wiley & Sons, Ltd. [source] |