Home About us Contact | |||
Hydrocarbon Compounds (hydrocarbon + compound)
Kinds of Hydrocarbon Compounds Selected AbstractsCuticular hydrocarbons in workers of the slave-making ant Polyergus samurai and its slave, Formica japonica (Hymenoptera: Formicidae)ENTOMOLOGICAL SCIENCE, Issue 3 2003Zhibin LIU Abstract Comparisons of cuticular hydrocarbons between workers of the dulotic ant Polyergus samurai and its slave, Formica japonica, were carried out. Gas chromatography,mass spectrometry showed that the slave-maker and its slave shared the major cuticular hydrocarbon compounds, but possessed several minor products unique to each species. No difference in hydrocarbon composition was detected between enslaved and free-living F. japonica workers, suggesting that association with P. samurai has no qualitative effect on hydrocarbon composition in these ants. Principal component analyses of the cuticular hydrocarbon profiles (CHP) revealed that (i) CHP was species specific in a given mixed colony; and (ii) among mixed colonies, P. samurai workers had species-colony specific CHP, while the same feature was not always found in enslaved and free-living F. japonica workers. Therefore, a ,uniform colony odor' in terms of CHP is not achieved in naturally mixed colonies of P. samurai nor those of its slaves, F. japonica. [source] Toxicity tests to assess pollutants removal during wastewater treatment and the quality of receiving waters in ArgentinaENVIRONMENTAL TOXICOLOGY, Issue 3 2001Carlos E. Gómez Abstract In Argentina, legislation to control adverse impacts of effluent discharges and the quality of receiving waters is scant and relies mainly on the physicochemical characteristics of the effluents and receiving waters. Objectives of this study were to use standardized acute toxicity tests to assess treatment of petrochemical industry effluents and the toxicity of various treated industrial effluents in the Buenos Aires metropolitan area and their receiving waters. Tests for the first objective used Daphnia magna and Ceriodaphnia dubia; those for the second used D. magna, Spirillum volutans, and Scenedesmus spinosus. Chemical analyses demonstrated that the removal of aromatic hydrocarbon compounds (benzene, toluene, ethylbenzene, xylene, styrene, and naphthalene) from the petrochemical effluents ranged between 77 and 93%, but toxicity removal was significantly lower: untreated effluents were very toxic and treated effluents were very toxic to toxic [acute toxicity units (TUa)>3]. Physicochemical parameters measured according to current Argentinian regulations indicated that industrial effluents (e.g., from textile and paper industries) were within established guidelines, but 25% of the samples were moderately to highly toxic (TUa>1.33). However, for the receiving waters, toxicity tests were moderate to very toxic. The results show the need of including tests for toxicity of discharged effluents, and their effects on receiving waters of Argentina, especially for regulatory purposes. © 2001 John Wiley & Sons, Inc. Environ Toxicol 16: 217,224, 2001 [source] Chlorinated hydrocarbons in flatfishes from the Southern California, USA, BightENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 6 2000Kenneth Schiff Abstract Alhough inputs of chlorinated hydrocarbon compounds to the Southern California Bight (SCB) are presently low, historical deposits represent a source of bioaccumulation potential to sediment-associated fauna. To assess this bioaccumulation potential, 14 chlorinated hydrocarbon classes were measured in livers of three species of flatfish collected from 63 randomly selected sites on the coastal shelf between Point Conception and the United States,Mexico international border. Tissue contamination was widespread throughout the SCB, but was limited to just two chlorinated hydrocarbon classes. Virtually 100% of Pacific sanddab (Citharichthys sordidus) and longfin sanddab (Citharichthys xanthostigma) populations were estimated to be contaminated with dichlorodiphenyltrichloroethane (total DDT = sum of o,p, and p,p, isomers of DDT + dichlorodiphenyldichloroethylene [DDE] + dichlorodiphenyldichloroethane [DDD]) and/or polychlorinated biphenyls (total PCBs). Total DDT also contaminated the majority (64%) of the Dover sole (Microstomus pacificus) population in the SCB. Total PCB measurements in tissues of SCB flatfish were dominated by 12 congeners (52, 66, 87, 101, 105, 118, 128, 138, 153, 170, 180, and 187), which averaged 95% of the combined mass of the 27 congeners analyzed. Sediment concentrations (normalized by total organic carbon content) accounted for most of the variability observed in tissue concentrations (normalized by lipid content) for 8 of these 12 congeners and total PCBs. Normalized sediment concentrations were also significantly correlated to normalized tissue concentrations for total DDT and p,p,-DDE. Tissue concentrations measured in this study from reference areas of the SCB were compared to tissue concentrations measured from reference areas in studies conducted in 1977 and 1985. Total DDT and total PCB liver concentrations were found to have decreased one to two orders of magnitude in Pacific and longfin sanddabs between 1985 and 1994. Total DDT and total PCB liver concentrations decreased 5- to 35-fold in Dover sole between 1977 and 1994. [source] Influence of phenanthrene and fluoranthene on the degradation of fluorene and glucose by Sphingomonas sp. strain LB126 in chemostat culturesFEMS MICROBIOLOGY ECOLOGY, Issue 1 2003René van Herwijnen Abstract Since bacteria degrading polycyclic aromatic hydrocarbon compounds (PAHs) in polluted soils are generally exposed to mixtures of PAHs, we examined the influence of simple PAH mixtures on the degradation activity of Sphingomonas sp. strain LB126. Fluorene serves as sole carbon and energy source for the strain LB126 and phenanthrene and fluoranthene are cometabolically degraded by this species. Chemostat cultures of the strain LB126 were used to study a potential inhibiting effect of phenanthrene and fluoranthene on the degradation of fluorene that was previously observed in batch cultures. We also looked at the effect of phenanthrene on the degradation of glucose in a chemostat culture to see if this effect was specific for the PAH-metabolic pathway or for the total metabolism of the strain. The co-substrates were supplied in a 5% to 30% fraction of fluorene. Phenanthrene and fluoranthene had no significant influence on growth. However, fluorene degradation was inhibited by both phenanthrene and fluoranthene. The effect of phenanthrene was about 10 times stronger than the effect of fluoranthene. Nevertheless, more than 95% removal of fluorene took place together with more than 95% removal of either phenanthrene or fluoranthene. The effect of phenanthrene on the strain LB126 could be ascribed to both toxicity and competitive inhibition, but the effect observed at steady state was due to competitive inhibition only. It appeared that the strain LB126 adapts to the toxicity of phenanthrene within five generations. The inhibitory effects observed previously in batch cultures of the strain LB126 should mainly be ascribed to the toxic effect of phenanthrene. [source] Long-Term Performance of Permeable Reactive Barriers Using Zero-Valent Iron: Geochemical and Microbiological EffectsGROUND WATER, Issue 4 2003Richard T. Wilkin Geochemical and microbiological factors that control long-term performance of subsurface permeable reactive barriers were evaluated at the Elizabeth City, North Carolina, and the Denver Federal Center, Colorado, sites. These ground water treatment systems use zero-valent iron filings (Peerless Metal Powders Inc.) to intercept and remediate chlorinated hydrocarbon compounds at the Denver Federal Center (funnel-and-gate system) and overlapping plumes of hexavalent chromium and chlorinated hydrocarbons at Elizabeth City (continuous wall system). Zero-valent iron at both sites is a long-term sink for carbon, sulfur, calcium, silicon, nitrogen, and magnesium. After about four years of operation, the average rates of inorganic carbon (IC) and sulfur (S) accumulation are 0.09 and 0.02 kg/m2/year, respectively, at Elizabeth City where upgradient waters contain <400 mg/L of total dissolved solids (TDS). At the Denver Federal Center site, upgradient ground water contains 1000 to 1200 mg/L TDS and rates of IC and S accumulation are as high as 2.16 and 0.80 kg/m2/year, respectively. At both sites, consistent patterns of spatially variable mineral precipitation and microbial activity are observed. Mineral precipitates and microbial biomass accumulate the fastest near the upgradient aquifer-Fe0 interface. Maximum net reductions in porosity due to the accumulation of sulfur and inorganic carbon precipitates range from 0.032 at Elizabeth City to 0.062 at the Denver Federal Center (gate 2) after about four years. Although pore space has been lost due the accumulation of authigenic components, neither site shows evidence of pervasive pore clogging after four years of operation. [source] Small molecule adsorption on to polyester capillary-channeled polymer fibers: Frontal analysis of naphthalene and naphthol (naphthalene and naphthol adsorption on capillary-channeled polymer fibers)JOURNAL OF SEPARATION SCIENCE, JSS, Issue 1 2010Christine M. Straut Abstract Frontal analysis was carried out employing poly(ethylene-terephthalate) capillary-channeled polymer fibers as the stationary phase for the immobilization of low-molecular-weight polycyclic aromatic hydrocarbon compounds (naphthol and naphthalene) from 2% methanol/water solutions. The effects of several experimental parameters on the frontal profile, the breakthrough volume, and the equilibrium parameters were determined for each solute. The amount adsorbed at exhaustion of naphthalene and naphthol was also compared. The kinetics and thermodynamics were maintained at relatively fast flow rates/linear velocities (,6,18,mm/s). Comparisons of dynamic capacity revealed that naphthalene was more retained than naphthol, in most situations more than five times that of the naphthol adsorption. This increase in capacity is most likely due to the multilayering of naphthalene on the surface of the fibers through ,,, interactions between the solute and the fiber surface and successive layering of solute molecules. The extent of layering is a function of the flow, with faster flow rates (and subsequent shear forces) reducing the extent of adsorbate,adsorbate interactions. Although the overall loading capacity of the capillary-channeled polymer fibers is far below porous phases, there are a number of attractive attributes that support further development. [source] Polycyclic aromatic hydrocarbon residues in the sediments of a dune lake as a result of power boatingLAKES & RESERVOIRS: RESEARCH AND MANAGEMENT, Issue 1 2001Thorsten D. Mosisch Abstract The potential chemical effects of motorized recreational activities (power boating, water skiing, jet skiing) on Brown Lake, an Australian perched, acid dune lake, were investigated. The objective of this study was to identify and quantify polycyclic aromatic hydrocarbon compounds (PAHs) that may have accumulated in the water and/or the organic bottom sediments of the test lake as a result of the operation of powered recreational watercraft, and to evaluate any risk to aquatic biota. To achieve this, a detailed sampling and analysis programme of the lake water and sediments was implemented. Basic water quality, ionic and nutrient data gave no indication of any deterioration in the water quality of the lake, which was attributable to human usage in general or motorized recreational activities in particular. However, analysis of samples taken from the organic bottom sediments of the lake revealed the presence of 10 PAH, including benzo(a)pyrene, chrysene, fluoranthene, phenanthrene and pyrene, which are known to be indicative of fossil fuel combustion processes. Three PAH compounds were found at all survey sites: benzo(a)pyrene (in 46% of samples), fluoranthene (in 53% of samples) and pyrene (in 44% of samples). Results of the analyses were compared with values from published guidelines for residues in freshwaters and sediments, as well as with previous studies dealing with the effects of fossil fuel combustion products on lakes. The highest PAH concentrations in sediments were recorded for benzo(a)pyrene, with three values (830, 955 and 1070 ,g kg,1 dryweight) exceeding the upper threshold recommended in the draft Canadian freshwater sediment quality guidelines. Benzo(a)pyrene also exceeded the lower Canadian sediment threshold in 51 (40%) samples. These results indicate a significant level of chemical contamination of Brown Lake as a consequence of four decades of motorized recreational activities and present a significant risk to aquatic biota, particularly benthic and littoral invertebrates associated with the contaminated sediments. [source] Use of a whole-cell biosensor to assess the bioavailability enhancement of aromatic hydrocarbon compounds by nonionic surfactantsBIOTECHNOLOGY & BIOENGINEERING, Issue 1 2008Angela Keane Abstract The whole-cell bioluminescent biosensor Pseudomonas putida F1G4 (PpF1G4), which contains a chromosomally-based sep-lux transcriptional fusion, was used as a tool for direct measurement of the bioavailability of hydrophobic organic compounds (HOCs) partitioned into surfactant micelles. The increased bioluminescent response of PpF1G4 in micellar solutions (up to 10 times the critical micellar concentration) of Triton X-100 and Brij 35 indicated higher intracellular concentrations of the test compounds, toluene, naphthalene, and phenanthrene, compared to control systems with no surfactants present. In contrast, Brij 30 caused a decrease in the bioluminescent response to the test compounds in single-solute systems, without adversely affecting cell growth. The decrease in bioluminescent response in the presence of Brij 30 did not occur in the presence of multiple HOCs extracted into the surfactant solutions from crude oil and creosote. The effect of the micellar solutions on the toluene biodegradation rate was consistent with the bioluminescent response in single-solute systems. None of the surfactants were toxic to PpF1G4 at the doses employed in this study, and PpF1G4 did not produce a bioluminescent response to the surfactants nor utilize them as growth substrates. TEM images suggest that the surfactants did not rupture the cell membranes. The results demonstrate that for Pseudomonas putida F1, nonionic surfactants such as Triton X-100 and Brij 35, at doses between 2 and 10 CMC, may increase the bioavailability and direct uptake of micellar phase HOCs that are common pollutants at contaminated sites. Biotechnol. Bioeng. 2008;99: 86,98. © 2007 Wiley Periodicals, Inc. [source] |