Home About us Contact | |||
Hydraulic Head (hydraulic + head)
Terms modified by Hydraulic Head Selected AbstractsSeasonal and Long-Term Variations in Hydraulic Head in a Karstic Aquifer: Roswell Artesian Basin, New Mexico,JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 1 2008Lewis Land Abstract: Water levels in the karstic San Andres limestone aquifer of the Roswell Artesian Basin, New Mexico, display significant variations on a variety of time scales. Large seasonal fluctuations in hydraulic head are directly related to the irrigation cycle in the Artesian Basin, lower in summer months and higher in winter when less irrigation occurs. Longer-term variations are the result of both human and climatic factors. Since the inception of irrigated farming more than a century ago, over-appropriation of water resources has caused water levels in the artesian aquifer to fall by as much as 70 m. The general decline in hydraulic head began to reverse in the mid-1980s due to a variety of conservation measures, combined with a period of elevated rainfall toward the end of the 20th Century. [source] A New Multilevel Ground Water Monitoring System Using Multichannel TubingGROUND WATER MONITORING & REMEDIATION, Issue 4 2002Murray D. Einarson A new multilevel ground water monitoring system has been developed that uses custom-extruded flexible 1.6-inch (4.1 cm) outside-diameter (O.D.) multichannel HOPE tubing (referred to as Continuous Multichannel Tubing or CMT) to monitor as many as seven discrete zones within a single borehole in either unconsolidated sediments or bedrock. Prior to inserting the tubing in the borehole, ports are created that allow ground water to enter six outer pie-shaped channels (nominal diameter = 0.5 inch [1.3 cm]) and a central hexagonal center channel (nominal diameter = 0.4 inch [1 cm]) at different depths, facilitating the measurement of depth-discrete piezometric heads and the collection of depth-discrete ground water samples. Sand packs and annular seals between the various monitored zones can be installed using conventional tremie methods. Alternatively, bentonite packers and prepacked sand packs have been developed that are attached to the tubing at the ground surface, facilitating precise positioning of annular seals and sand packs. Inflatable rubber packers for permanent or temporary installations in bedrock aquifers are currently undergoing site trials. Hydraulic heads are measured with conventional water-level meters or electronic pressure transducers to generate vertical profiles of hydraulic head. Ground water samples are collected using peristaltic pumps, small-diameter bailers, inertial lift pumps, or small-diameter canister samplers. For monitoring hydrophobic organic compounds, the CMT tubing is susceptible to both positive and negative biases caused by sorption, desorption, and diffusion. These biases can be minimized by: (1) purging the channels prior to sampling, (2) collecting samples from separate 0.25-inch (0.64 cm) O.D. Teflon sampling tubing inserted to the bottom of each sampling channel, or (3) collecting the samples downhole using sampling devices positioned next to the intake ports. More than 1000 CMT multilevel wells have been installed in North America and Europe to depths up to 260 feet (79 m) below ground surface. These wells have been installed in boreholes created in unconsolidated sediments and bedrock using a wide range of drilling equipment, including sonic, air rotary, diamond-bit coring, hollow-stem auger, and direct push. This paper presents a discussion of three field trials of the system, demonstrating its versatility and illustrating the type of depth-discrete data that can be collected with the system. [source] Sphagnum under pressure: towards an ecohydrological approach to examining Sphagnum productivityECOHYDROLOGY, Issue 4 2008D. K. Thompson Abstract The genus Sphagnum is the key peat-forming bryophyte in boreal ecosystems. Relying entirely on passive capillary action for water transport, soil moisture is often the limiting factor in Sphagnum production, and hence peat accumulation. While several hydrological models of peat physics and peatland water movement exist, these models do not readily interface with observations and models of peatland carbon accumulation. A conflict of approaches exists, where hydrological studies primarily utilize variables such as hydraulic head, while ecological models of Sphagnum growth adopt the coarse hydrological variables of water table (WT), volumetric water content (VWC) or gravimetric water content (WC). This review examines the potential of soil pressure head as a measurement to link the hydrological and ecological functioning of Sphagnum in peatlands. The non-vascular structure of Sphagnum mosses and the reliance on external capillary transport of water in the mosses make them an ideal candidate for this approach. The main advantage of pressure head is the ability to mechanistically link plot-scale hydrology to cellular-scale water requirements and carbon exchange. Measurement of pressure head may improve photosynthetic process representation in the next generation of peatland models. Copyright © 2008 John Wiley & Sons, Ltd. [source] Hydrologic and geochemical controls on soluble benzene migration in sedimentary basinsGEOFLUIDS (ELECTRONIC), Issue 2 2005Y. ZHANG Abstract The effects of groundwater flow and biodegradation on the long-distance migration of petroleum-derived benzene in oil-bearing sedimentary basins are evaluated. Using an idealized basin representation, a coupled groundwater flow and heat transfer model computes the hydraulic head, stream function, and temperature in the basin. A coupled mass transport model simulates water washing of benzene from an oil reservoir and its miscible, advective/dispersive transport by groundwater. Benzene mass transfer at the oil,water contact is computed assuming equilibrium partitioning. A first-order rate constant is used to represent aqueous benzene biodegradation. A sensitivity study is used to evaluate the effect of the variation in aquifer/geochemical parameters and oil reservoir location on benzene transport. Our results indicate that in a basin with active hydrodynamics, miscible benzene transport is dominated by advection. Diffusion may dominate within the cap rock when its permeability is less than 10,19 m2. Miscible benzene transport can form surface anomalies, sometimes adjacent to oil fields. Biodegradation controls the distance of transport down-gradient from a reservoir. We conclude that benzene detected in exploration wells may indicate an oil reservoir that lies hydraulically up-gradient. Geochemical sampling of hydrocarbons from springs and exploration wells can be useful only when the oil reservoir is located within about 20 km. Benzene soil gas anomalies may form due to regional hydrodynamics rather than separate phase migration. Diffusion alone cannot explain the elevated benzene concentration observed in carrier beds several km away from oil fields. [source] Interpretation of observed fluid potential patterns in a deep sedimentary basin under tectonic compression: Hungarian Great Plain, Pannonian BasinGEOFLUIDS (ELECTRONIC), Issue 1 2001J. Tóth Abstract The , 40 000 km2 Hungarian Great Plain portion of the Pannonian Basin consists of a basin fill of 100 m to more than 7000 m thick semi- to unconsolidated marine, deltaic, lacustrine and fluviatile clastic sediments of Neogene age, resting on a strongly tectonized Pre-Neogene basement of horst-and-graben topography of a relief in excess of 5000 m. The basement is built of a great variety of brittle rocks, including flysch, carbonates and metamorphics. The relatively continuous Endr,d Aquitard, with a permeability of less than 1 md (10,15 m2) and a depth varying between 500 and 5000 m, divides the basin's rock framework into upper and lower sequences of highly permeable rock units, whose permeabilities range from a few tens to several thousands of millidarcy. Subsurface fluid potential and flow fields were inferred from 16 192 water level and pore pressure measurements using three methods of representation: pressure,elevation profiles; hydraulic head maps; and hydraulic cross-sections. Pressure,elevation profiles were constructed for eight areas. Typically, they start from the surface with a straight-line segment of a hydrostatic gradient (,st = 9.8067 MPa km,1) and extend to depths of 1400,2500 m. At high surface elevations, the gradient is slightly smaller than hydrostatic, while at low elevations it is slightly greater. At greater depths, both the pressures and their vertical gradients are uniformly superhydrostatic. The transition to the overpressured depths may be gradual, with a gradient of ,dyn = 10,15 MPa km,1 over a vertical distance of 400,1000 m, or abrupt, with a pressure jump of up to 10 MPa km,1 over less than 100 m and a gradient of ,dyn > 20 MPa km,1. According to the hydraulic head maps for 13 100,500 m thick horizontal slices of the rock framework, the fluid potential in the near-surface domains declines with depth beneath positive topographic features, but it increases beneath depressions. The approximate boundary between these hydraulically contrasting regions is the 100 m elevation contour line in the Duna,Tisza interfluve, and the 100,110 m contours in the Nyírség uplands. Below depths of ,,600 m, islets of superhydrostatic heads develop which grow in number, areal extent and height as the depth increases; hydraulic heads may exceed 3000 m locally. A hydraulic head ,escarpment' appears gradually in the elevation range of ,,1000 to ,,2800 m along an arcuate line which tracks a major regional fault zone striking NE,SW: heads drop stepwise by several hundred metres, at places 2000 m, from its north and west sides to the south and east. The escarpment forms a ,fluid potential bank' between a ,fluid potential highland' (500,2500 m) to the north and west, and a ,fluid potential basin' (100,500 m) to the south and east. A ,potential island' rises 1000 m high above this basin further south. According to four vertical hydraulic sections, groundwater flow is controlled by the topography in the upper 200,1700 m of the basin; the driving force is orientated downwards beneath the highlands and upwards beneath the lowlands. However, it is directed uniformly upwards at greater depths. The transition between the two regimes may be gradual or abrupt, as indicated by wide or dense spacing of the hydraulic head contours, respectively. Pressure ,plumes' or ,ridges' may protrude to shallow depths along faults originating in the basement. The basement horsts appear to be overpressured relative to the intervening grabens. The principal thesis of this paper is that the two main driving forces of fluid flow in the basin are gravitation, due to elevation differences of the topographic relief, and tectonic compression. The flow field is unconfined in the gravitational regime, whereas it is confined in the compressional regime. The nature and geometry of the fluid potential field between the two regimes are controlled by the sedimentary and structural features of the rock units in that domain, characterized by highly permeable and localized sedimentary windows, conductive faults and fracture zones. The transition between the two potential fields can be gradual or abrupt in the vertical, and island-like or ridge-like in plan view. The depth of the boundary zone can vary between 400 and 2000 m. Recharge to the gravitational regime is inferred to occur from infiltrating precipitation water, whereas that to the confined regime is from pore volume reduction due to the basement's tectonic compression. [source] Controls on Ground Water Chemistry in the Central Couloir Sud Rifain, MoroccoGROUND WATER, Issue 2 2010Lahcen Benaabidate Irrigation, urbanization, and drought pose challenges for the sustainable use of ground water in the central Couloir sud rifain, a major agricultural region in north-central Morocco, which includes the cities of Fčs and Meknčs. The central Couloir is underlain by unconfined and confined carbonate aquifers that have suffered declines in hydraulic head and reductions in spring flow in recent decades. Previous studies have surveyed ground water flow and water quality in wells and springs but have not comprehensively addressed the chemistry of the regional aquifer system. Using graphical techniques and saturation index calculations, we infer that major ion chemistry is controlled (1) in the surficial aquifer by cation exchange, calcite dissolution, mixing with deep ground water, and possibly calcite precipitation and (2) in the confined aquifer and warm springs by calcite dissolution, dolomite dissolution, mixing with water that has dissolved gypsum and halite, and calcite precipitation. Analyses of 2H and 18O indicate that shallow ground water is affected by evaporation during recharge (either of infiltrating precipitation or return flow), whereas deep ground water is sustained by meteoric recharge with little evaporation. Mechanisms of recharge and hydrochemical evolution are broadly consistent with those delineated for similar regional aquifer systems elsewhere in Morocco and in southern Spain. [source] Inverse Modeling Approach to Allogenic Karst System CharacterizationGROUND WATER, Issue 3 2009N. Dörfliger Allogenic karst systems function in a particular way that is influenced by the type of water infiltrating through river water losses, by karstification processes, and by water quality. Management of this system requires a good knowledge of its structure and functioning, for which a new methodology based on an inverse modeling approach appears to be well suited. This approach requires both spring and river inflow discharge measurements and a continuous record of chemical parameters in the river and at the spring. The inverse model calculates unit hydrographs and the impulse responses of fluxes from rainfall hydraulic head at the spring or rainfall flux data, the purpose of which is hydrograph separation. Hydrograph reconstruction is done using rainfall and river inflow data as model input and enables definition at each time step of the ratio of each component. Using chemical data, representing event and pre-event water, as input, it is possible to determine the origin of spring water (either fast flow through the epikarstic zone or slow flow through the saturated zone). This study made it possible to improve a conceptual model of allogenic karst system functioning. The methodology is used to study the Bas-Agly and the Cent Font karst systems, two allogenic karst systems in Southern France. [source] Introduction to Hydromechanical Well Tests in Fractured Rock AquifersGROUND WATER, Issue 1 2009Todd Schweisinger This article introduces hydromechanical well tests as a viable field method for characterizing fractured rock aquifers. These tests involve measuring and analyzing small displacements along with pressure transients. Recent developments in equipment and analyses have simplified hydromechanical well tests, and this article describes initial field results and interpretations during slug and constant-rate pumping tests conducted at a site underlain by fractured biotite gneiss in South Carolina. The field data are characterized by displacements of 0.3 ,m to more than 10 ,m during head changes up to 10 m. Displacements are a hysteretic function of hydraulic head in the wellbore, with displacements late in a well test always exceeding those at similar wellbore pressures early in the test. Displacement measurements show that hydraulic aperture changes during well tests, and both scaling analyses and field data suggest that T changed by a few percent per meter of drawdown during slug and pumping tests at our field site. Preliminary analyses suggest that displacement data can be used to improve estimates of storativity and to reduce nonuniqueness during hydraulic well tests involving single wells. [source] Analysis of Steady Ground Water Flow Toward Wells in a Confined-Unconfined AquiferGROUND WATER, Issue 4 2006Chen Chong-Xi A confined aquifer may become unconfined near the pumping wells when the water level falls below the confining unit in the case where the pumping rate is great and the excess hydraulic head over the top of the aquifer is small. Girinskii's potential function is applied to analyze the steady ground water flow induced by pumping wells with a constant-head boundary in a mixed confined-unconfined aquifer. The solution of the single-well problem is derived, and the critical radial distance at which the flow changes from confined to unconfined condition is obtained. Using image wells and the superposition method, an analytic solution is presented to study steady ground water flow induced by a group of pumping wells in an aquifer bounded by a river with constant head. A dimensionless function is introduced to determine whether a water table condition exists or not near the pumping wells. An example with three pumping wells is used to demonstrate the patterns of potentiometric surface and development of water table around the wells. [source] Ground Water/Surface Water Interaction in a Fractured Rock AquiferGROUND WATER, Issue 5 2003Jaime P.A. Oxtobee In a recent field study of ground water/surface water interaction between a bedrock stream and an underlying fractured rock aquifer, it was determined that the majority of ground water discharge occurred through sparsely located vertical fractures. In this paper, the dominant mechanisms governing ground water/surface water exchange in such an environment are investigated using a numerical model. The study was conducted using several conceptual models based on the field study results. Although the field results provided the motivation for the modeling study, it was not intended to match modeling and field results directly. In addition, the extent of capture zones for discharging or recharging fractures was explored. The results of this study are intended to provide a better understanding of contaminant migration in the vicinity of bedrock streams. Based on the numerical results, the rate of ground water discharge (or recharge) was found to depend on the aperture size of the discharging feature, and on the distribution of hydraulic head with depth within the fracture network. It was determined that the extent of both the capture zone and reverse capture zone for an individual fracture can be extremely large, and will be determined by the height of the stream stage, the fracture apertures of the network, and the hydraulic-head distribution within the network. Because both the stream stage and the hydraulic-head distribution are transient, the size of the capture zone and/or the reverse capture zone for an individual fracture may change significantly over time. As a result, the migration path for contaminants within the fracture network and between the surface and subsurface will also vary significantly with time. [source] Recharge Through a Regional Till Aquitard: Three-Dimensional Flow Model Water Balance ApproachGROUND WATER, Issue 3 2000Richard E. Gerber In southern Ontario, vertical leakage through a regionally extensive till is the primary source of recharge to underlying aquifers used for domestic and municipal water supply. Since leakage is largely controlled by the bulk hydraulic conductivity (K) of the aquitard, accurate estimates of K are necessary to quantify the resource. Considerable controversy exists regarding estimates of K for this aquitard, which vary according to the scale of the test method. For the till matrix, estimates from core samples and slug tests consistently range from 10,11 to 10,10 m/s. Isotopic evidence (3H), on the other hand, indicates that nonmatrix structures such as sand lenses, erosional surfaces, joints, and fractures significantly enhance till permeability. This is confirmed by slug test, pump test, recharge, and water balance studies, which show that K varies over seven orders of magnitude (10,12 to 10,5 m/s). To provide a regional estimate of bulk K and a reliable estimate of vertical recharge through the Northern Till, a numerical ground water flow model was constructed for the Duffins and Petticoat Creek drainage hasin. The model was calibrated to measurements of hydraulic head and estimates and measurements of base flow throughout the basin. This model demonstrates that the vertical hydraulic conductivity (Kv) for the Northern Till ranges from 5 × 10,10 to 5 × 10,9 m/s, values that are up to 2.5 orders of magnitude greater than matrix K estimates. Regional recharge through the Northern Till is estimated to range from 30 to 35 mm/a. [source] A New Depth-Discrete Multilevel Monitoring Approach for Fractured RockGROUND WATER MONITORING & REMEDIATION, Issue 2 2007John A. Cherry A new approach for monitoring in fractured rock was demonstrated in a contaminated (trichloroethylene and metolachlor) dolostone aquifer used for municipal water supply. The system consists of two related technologies: a continuous packer for temporary borehole seals (Flexible Liner Underground Technologies Ltd. [FLUTe] blank liner) and a depth-discrete multilevel monitoring system (MLS) (the Water FLUTe) for temporary or permanent monitoring. The continuous borehole liner consists of a urethane-coated nylon fabric tube custom sized to each hole. The FLUTe MLS consists of the same liner material with many depth-discrete intervals for monitoring hydraulic head and/or ground water quality. The FLUTe blank liner seals the entire borehole, prior to FLUTe multilevel installation, to prevent vertical cross connection while allowing borehole logging and testing. The FLUTe multilevel system also seals the entire borehole with the exception of each monitoring interval where the formation water has direct hydraulic connection to the pumping system via a thin permeable mesh sandwiched between the liner and the formation. The blank sealing liners and the multilevel systems were used in five boreholes ranging in diameter between 9.6 and 14.5 cm in the dolostone aquifer to depths of 150 m. The systems were custom designed for each borehole and included between 12 and 15 monitoring intervals. The application demonstrated the ease of installation and removability and facilitated obtaining large data sets with minimal labor. The system offers unique and versatile design features not possible with other bedrock monitoring devices and has been used at many bedrock contamination sites across North America. [source] A New Multilevel Ground Water Monitoring System Using Multichannel TubingGROUND WATER MONITORING & REMEDIATION, Issue 4 2002Murray D. Einarson A new multilevel ground water monitoring system has been developed that uses custom-extruded flexible 1.6-inch (4.1 cm) outside-diameter (O.D.) multichannel HOPE tubing (referred to as Continuous Multichannel Tubing or CMT) to monitor as many as seven discrete zones within a single borehole in either unconsolidated sediments or bedrock. Prior to inserting the tubing in the borehole, ports are created that allow ground water to enter six outer pie-shaped channels (nominal diameter = 0.5 inch [1.3 cm]) and a central hexagonal center channel (nominal diameter = 0.4 inch [1 cm]) at different depths, facilitating the measurement of depth-discrete piezometric heads and the collection of depth-discrete ground water samples. Sand packs and annular seals between the various monitored zones can be installed using conventional tremie methods. Alternatively, bentonite packers and prepacked sand packs have been developed that are attached to the tubing at the ground surface, facilitating precise positioning of annular seals and sand packs. Inflatable rubber packers for permanent or temporary installations in bedrock aquifers are currently undergoing site trials. Hydraulic heads are measured with conventional water-level meters or electronic pressure transducers to generate vertical profiles of hydraulic head. Ground water samples are collected using peristaltic pumps, small-diameter bailers, inertial lift pumps, or small-diameter canister samplers. For monitoring hydrophobic organic compounds, the CMT tubing is susceptible to both positive and negative biases caused by sorption, desorption, and diffusion. These biases can be minimized by: (1) purging the channels prior to sampling, (2) collecting samples from separate 0.25-inch (0.64 cm) O.D. Teflon sampling tubing inserted to the bottom of each sampling channel, or (3) collecting the samples downhole using sampling devices positioned next to the intake ports. More than 1000 CMT multilevel wells have been installed in North America and Europe to depths up to 260 feet (79 m) below ground surface. These wells have been installed in boreholes created in unconsolidated sediments and bedrock using a wide range of drilling equipment, including sonic, air rotary, diamond-bit coring, hollow-stem auger, and direct push. This paper presents a discussion of three field trials of the system, demonstrating its versatility and illustrating the type of depth-discrete data that can be collected with the system. [source] Hydrological influences on hyporheic water quality: implications for salmon egg survivalHYDROLOGICAL PROCESSES, Issue 9 2004I. A. Malcolm Abstract The spatial and temporal variability of groundwater,surface-water (GW,SW) interactions was investigated in an intensively utilized salmon spawning riffle. Hydrochemical tracers, were used along with high-resolution hydraulic head and temperature data to assess hyporheic dynamics. Surface and subsurface hydrochemistry were monitored at three locations where salmon spawning had been observed in previous years. Temperature and hydraulic head were monitored in three nests of three piezometers located to characterize the head, the run and the tail-out of the riffle feature. Hydrochemical gradients between surface and subsurface water indicated increasing GW influence with depth into the hyporheic zone. Surface water was characterized by high dissolved oxygen (DO) concentrations, low alkalinity and conductivity. Hyporheic water was generally characterized by high levels of alkalinity and conductivity indicative of longer residence times, and low DO, indicative of reducing conditions. Hydrochemical and temperature gradients varied spatially over the riffle in response to changes in local GW,SW interactions at the depths investigated. Groundwater inputs dominated the head and tail of the riffle. The influence of SW increased in the area of accelerating flow and decreasing water depth through the run of the riffle. Temporal GW,SW interactions also varied in response to changing hydrological conditions. Gross changes in hyporheic hydrochemistry were observed at the weekly scale in response to changing flow conditions and surface water inputs to the hyporheic zone. During low flows, caused by freezing or dry weather, hyporheic hydrochemistry was dominated by GW inputs. During higher flows hyporheic hydrochemistry indicated that SW contributions increased. In addition, high-resolution hydraulic head data indicated that rapid changes in GW,SW interactions occurred during hydrological events. The spatial, and possibly the temporal, variability of GW,SW interactions had a marked effect on the survival of salmon ova. It is concluded that hyporheic dynamics and their effect on stream ecology should be given increased consideration by fisheries and water resource managers. Copyright © 2004 John Wiley & Sons, Ltd. [source] A classification of drainage and macropore flow in an agricultural catchmentHYDROLOGICAL PROCESSES, Issue 1 2002Dr C. M. Heppell Abstract This paper uses a variety of multivariate statistical techniques in order to improve current understanding of the antecedent and rainfall controls on drainage characteristics for an agricultural underdrained clay site. Using the dataset obtained from a two-year hillslope study at Wytham (Oxfordshire, UK) a number of patterns in the nature and style of drainage events were explored. First, using principal components analysis, a distinction was drawn between drainflow controlled by antecedent conditions and drainflow controlled by rainfall characteristics. Dimensional analysis then distinguished between two further types of drainflow event: antecedent limited events (ALE) and non-antecedent limited events (NALE). These were drainflow events requiring a minimum antecedent hydraulic head to occur (ALE) and events that occurred in response to rainfall irrespective of the antecedent conditions, because the rainfall was either of high enough intensity or duration to prompt a response in drainflow (NALE). 2. The dataset also made possible a preliminary investigation into the controls on and types of macropore flow at the site. Principal components analysis identified that rainfall characteristics were more important than antecedent conditions in generating high proportions of macropore flow in drainflow. Of the rainfall characteristics studied, rainfall amount and intensity were the dominant controls on the amount of macropore flow, with duration as a secondary control. Two styles of macropore flow were identified: intensity-driven and duration-driven. Intensity-driven events are characterized by rainfall of high intensity and short duration. During such events the amount of macropore flow is proportional to the rainfall intensity and the interaction between macropore and matrix flow is kinetically limited. The second style of macropore flow is characterized by long-duration events. For these events the amount of macropore flow approaches a maximum value whatever the rainfall duration. This suggests that these events are characterized by an equilibrium interaction between macropores and matrix flow. Copyright © 2002 John Wiley & Sons, Ltd. [source] A novel analytical solution for constant-head test in a patchy aquiferINTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 12 2006Shaw-Yang Yang Abstract A mathematical model describing the hydraulic head distribution for a constant-head test performed in a well situated at the centre of a patchy aquifer is presented. The analytical solution for the mathematical model is derived by the Laplace transforms and the Bromwich integral method. The solution for the hydraulic head has been shown to satisfy the governing equations, related boundary conditions, and continuity requirements for the hydraulic head and flow rate at the interface of the patch and outer regions. An efficient numerical approach is proposed to evaluate the solution, which has an integral covering an integration range from zero to infinity and an integrand consisting the product and square of the Bessel functions. This solution can be used to produce the curves of dimensionless hydraulic head against dimensionless time for investigating the effect of the contrast of formation properties on the dimensionless hydraulic head distribution. Define the ratio of outer-region transmissivity to patch-region transmissivity as ,. The dimensionless hydraulic head for ,=0.1 case is about 2.72 times to that for ,=10 case at dimensionless large time (e.g. ,,106) when the dimensionless distance (,) equals 10. The results indicate that the hydraulic head distribution highly depends on the hydraulic properties of two-zone formations. Copyright © 2006 John Wiley & Sons, Ltd. [source] Seasonal and Long-Term Variations in Hydraulic Head in a Karstic Aquifer: Roswell Artesian Basin, New Mexico,JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 1 2008Lewis Land Abstract: Water levels in the karstic San Andres limestone aquifer of the Roswell Artesian Basin, New Mexico, display significant variations on a variety of time scales. Large seasonal fluctuations in hydraulic head are directly related to the irrigation cycle in the Artesian Basin, lower in summer months and higher in winter when less irrigation occurs. Longer-term variations are the result of both human and climatic factors. Since the inception of irrigated farming more than a century ago, over-appropriation of water resources has caused water levels in the artesian aquifer to fall by as much as 70 m. The general decline in hydraulic head began to reverse in the mid-1980s due to a variety of conservation measures, combined with a period of elevated rainfall toward the end of the 20th Century. [source] Meltwater discharge through the subglacial bed and its land-forming consequences from numerical experiments in the Polish lowland during the last glaciationEARTH SURFACE PROCESSES AND LANDFORMS, Issue 4 2009Jan A. Piotrowski Abstract Numerical experiments suggest that the last glaciation severely affected the upper lithosphere groundwater system in NW Poland: primarily its flow pattern, velocities and fluxes. We have simulated subglacial groundwater flow in two and three spatial dimensions using finite difference codes for steady-state and transient conditions. The results show how profoundly the ice sheet modifies groundwater pressure heads beneath and some distance beyond the ice margin. All model runs show water discharge at the ice forefield driven by ice-sheet-thickness-modulated, down-ice-decreasing hydraulic heads. In relation to non-glacial times, the transient 3D model shows significant changes in the groundwater flow directions in a regionally extensive aquifer ca. 90 m below the ice,bed interface and up to 40 km in front of the glacier. Comparison with empirical data suggests that, depending on the model run, only between 5 and 24% of the meltwater formed at the ice sole drained through the bed as groundwater. This is consistent with field observations documenting abundant occurrence of tunnel valleys, indicating that the remaining portion of basal meltwater was evacuated through a channelized subglacial drainage system. Groundwater flow simulation suggests that in areas of very low hydraulic conductivity and adverse subglacial slopes water ponding at the ice sole was likely. In these areas the relief shows distinct palaeo-ice lobes, indicating fast ice flow, possibly triggered by the undrained water at the ice,bed interface. Owing to the abundance of low-permeability strata in the bed, the simulated groundwater flow depth is less than ca. 200 m. Copyright © 2009 John Wiley & Sons, Ltd. [source] Interpretation of observed fluid potential patterns in a deep sedimentary basin under tectonic compression: Hungarian Great Plain, Pannonian BasinGEOFLUIDS (ELECTRONIC), Issue 1 2001J. Tóth Abstract The , 40 000 km2 Hungarian Great Plain portion of the Pannonian Basin consists of a basin fill of 100 m to more than 7000 m thick semi- to unconsolidated marine, deltaic, lacustrine and fluviatile clastic sediments of Neogene age, resting on a strongly tectonized Pre-Neogene basement of horst-and-graben topography of a relief in excess of 5000 m. The basement is built of a great variety of brittle rocks, including flysch, carbonates and metamorphics. The relatively continuous Endr,d Aquitard, with a permeability of less than 1 md (10,15 m2) and a depth varying between 500 and 5000 m, divides the basin's rock framework into upper and lower sequences of highly permeable rock units, whose permeabilities range from a few tens to several thousands of millidarcy. Subsurface fluid potential and flow fields were inferred from 16 192 water level and pore pressure measurements using three methods of representation: pressure,elevation profiles; hydraulic head maps; and hydraulic cross-sections. Pressure,elevation profiles were constructed for eight areas. Typically, they start from the surface with a straight-line segment of a hydrostatic gradient (,st = 9.8067 MPa km,1) and extend to depths of 1400,2500 m. At high surface elevations, the gradient is slightly smaller than hydrostatic, while at low elevations it is slightly greater. At greater depths, both the pressures and their vertical gradients are uniformly superhydrostatic. The transition to the overpressured depths may be gradual, with a gradient of ,dyn = 10,15 MPa km,1 over a vertical distance of 400,1000 m, or abrupt, with a pressure jump of up to 10 MPa km,1 over less than 100 m and a gradient of ,dyn > 20 MPa km,1. According to the hydraulic head maps for 13 100,500 m thick horizontal slices of the rock framework, the fluid potential in the near-surface domains declines with depth beneath positive topographic features, but it increases beneath depressions. The approximate boundary between these hydraulically contrasting regions is the 100 m elevation contour line in the Duna,Tisza interfluve, and the 100,110 m contours in the Nyírség uplands. Below depths of ,,600 m, islets of superhydrostatic heads develop which grow in number, areal extent and height as the depth increases; hydraulic heads may exceed 3000 m locally. A hydraulic head ,escarpment' appears gradually in the elevation range of ,,1000 to ,,2800 m along an arcuate line which tracks a major regional fault zone striking NE,SW: heads drop stepwise by several hundred metres, at places 2000 m, from its north and west sides to the south and east. The escarpment forms a ,fluid potential bank' between a ,fluid potential highland' (500,2500 m) to the north and west, and a ,fluid potential basin' (100,500 m) to the south and east. A ,potential island' rises 1000 m high above this basin further south. According to four vertical hydraulic sections, groundwater flow is controlled by the topography in the upper 200,1700 m of the basin; the driving force is orientated downwards beneath the highlands and upwards beneath the lowlands. However, it is directed uniformly upwards at greater depths. The transition between the two regimes may be gradual or abrupt, as indicated by wide or dense spacing of the hydraulic head contours, respectively. Pressure ,plumes' or ,ridges' may protrude to shallow depths along faults originating in the basement. The basement horsts appear to be overpressured relative to the intervening grabens. The principal thesis of this paper is that the two main driving forces of fluid flow in the basin are gravitation, due to elevation differences of the topographic relief, and tectonic compression. The flow field is unconfined in the gravitational regime, whereas it is confined in the compressional regime. The nature and geometry of the fluid potential field between the two regimes are controlled by the sedimentary and structural features of the rock units in that domain, characterized by highly permeable and localized sedimentary windows, conductive faults and fracture zones. The transition between the two potential fields can be gradual or abrupt in the vertical, and island-like or ridge-like in plan view. The depth of the boundary zone can vary between 400 and 2000 m. Recharge to the gravitational regime is inferred to occur from infiltrating precipitation water, whereas that to the confined regime is from pore volume reduction due to the basement's tectonic compression. [source] Transient Leakance and Infiltration Characteristics during Lake Bank FiltrationGROUND WATER, Issue 1 2009B. Wiese Infiltration capacity of bank filtration systems depends on water extraction and hydraulic resistance of the bed sediments. Lakebed hydraulics may be especially affected by clogging, which is dependent on settlement of fine particles, redox potential, and other factors. In the field, most of these processes are difficult to quantify, and thus, when calculating response to pumping the water flux across the sediment surface is assumed to be linearly dependent on the hydraulic gradient. However, this assumption was not adequate to describe conditions at a bank filtration site located at Lake Tegel, Berlin, Germany. Hence, we first assumed the leakage coefficient (or leakance) is spatially distributed and also temporally variant. Furthermore, observations show that the leakance is considerably higher in shallow than in deeper areas; hence, leakance was assumed to be dependent on the existence and thickness of an unsaturated zone below the lake. The proposed explanation of spatial and temporal variability in leakance involves a hypothesis for redox dependent and reversible biogeochemical clogging, supported by geochemical observations in surface water and ground water. Four leakance approaches are implemented in the ground water flow code MODFLOW2000 and calibrated by inverse modeling using the parameter estimation software PEST. These concepts are evaluated by examining the fit to the hydraulic heads, to infiltration measurements, transport modeling results, and considering the degrees of freedom due to the number of calibration parameters. The leakage concept based on the assumption of the influence of an unsaturated zone on clogging processes best explains the field data. [source] Ground Water Flow Analysis of a Mid-Atlantic Outer Coastal Plain Watershed, Virginia, U.S.A.GROUND WATER, Issue 2 2002Michael A. Robinson Models for ground water flow (MODFLOW) and particle tracking (MODPATH) were used to determine ground water flow patterns, principal ground water discharge and recharge zones, and estimates of ground water travel times in an unconfined ground water system of an outer coastal plain watershed on the Delmarva Peninsula, Virginia. By coupling recharge and discharge zones within the watershed, flowpath analysis can provide a method to locate and implement specific management strategies within a watershed to reduce ground water nitrogen loading to surface water. A monitoring well network was installed in Eyreville Creek watershed, a first-order creek, to determine hydraulic conductivities and spatial and temporal variations in hydraulic heads for use in model calibration. Ground water flow patterns indicated the convergence of flow along the four surface water features of the watershed; primary discharge areas were in the noontide portions of the watershed. Ground water recharge zones corresponded to the surface water features with minimal development of a regional ground water system. Predicted ground water velocities varied between < 0.01 to 0.24 m/day, with elevated values associated with discharge areas and areas of convergence along surface water features. Some ground water residence times exceeded 100 years, although average residence times ranged between 16 and 21 years; approximately 95% of the ground water resource would reflect land use activities within the last 50 years. [source] |