Home About us Contact | |||
Hydraulic Diameter (hydraulic + diameter)
Selected AbstractsThermal performance analysis of a tube finned surfaceINTERNATIONAL JOURNAL OF ENERGY RESEARCH, Issue 4 2002Kadir Bilen Abstract The present work submits an experimental work on the heat transfer and friction loss characteristic, employing a tube finned heating surface kept at a constant temperature in a rectangular channel. The tube fins attached on the surface (o.d.=29 mm) were arranged as either in-line or staggered. The parameters for the study were Reynolds number (3700,30 000), depending on hydraulic diameter, the distance between the tube fins in the flow direction (Sy/D=1.72,3.45) and the fin arrangement. The change in the Nusselt number with these parameters was determined. For both tube fin arrangements, it was observed that increasing Reynolds number increased Nusselt number, and maximum heat transfer occurred at Sy/D=2.59. Thermal performances for both arrangements were also determined and compared with respect to heat transfer from the same surface without fins. With staggered array, a heat transfer enhancement up to 25 per cent for Sy/D=3.45 in staggered array was achieved in constant pumping power. Copyright © 2002 John Wiley & Sons, Ltd. [source] Thermal and hydrodynamic characteristics of constructal tree-shaped minichannel heat sinkAICHE JOURNAL, Issue 8 2010Yongping Chen Abstract A three-dimensional thermal and hydrodynamic model for constructal tree-shaped minichannel heat sink is developed. The heat and fluid flow in the constructal heat sink with an inlet hydraulic diameter of 4 mm are numerically analyzed, taking into consideration conjugate heat transfer in the channel walls. The pressure drop, temperature uniformity, and coefficient of performance (COP) of the constructal tree-shaped heat sink are evaluated and compared with those of the corresponding traditional serpentine flow pattern. The results indicate that the constructal tree-shaped minichannel heat sinks have considerable advantages over the traditional serpentine flow patterns in both heat transfer and pressure drop. The strong and weak heat flow can be effectively allocated in tree-shaped flow structures; hence, the inherent advantage of uniform temperature on the heating surface in the constructal tree-shaped heat sink is demonstrated. And in tree-shaped flow structures, the local pressure loss due to confluence flow is found to be larger than that due to diffluence flow. In addition, an aluminum constructal tree-shaped minichannel heat sink is fabricated to conduct the verification experiment. The experimentally measured temperature distribution and pressure drop are in agreement with the numerical simulation, which verifies that the present model is reasonable. © 2009 American Institute of Chemical Engineers AIChE J, 2010 [source] Viscous co-current downward Taylor flow in a square mini-channelAICHE JOURNAL, Issue 7 2010Özge Keskin Abstract This article presents a computational study of the co-current downward Taylor flow of gas bubbles in a viscous liquid within a square channel of 1 mm hydraulic diameter. The three-dimensional numerical simulations are performed with an in-house computer code, which is based on the volume-of-fluid method with interface reconstruction. The computed (always axi-symmetric) bubble shapes are validated by experimental flow visualizations for varying capillary number. The evaluation of the numerical results for a series of simulations reveals the dependence of the bubble diameter and the interfacial area per unit volume on the capillary number. Correlations between bubble velocity and total superficial velocity are also provided. The present results are useful to estimate the values of the bubble diameter, the liquid film thickness and the interfacial area per unit volume from given values of the gas and liquid superficial velocities. © 2009 American Institute of Chemical Engineers AIChE J, 2010 [source] The challenge of tree height in Eucalyptus regnans: when xylem tapering overcomes hydraulic resistanceNEW PHYTOLOGIST, Issue 4 2010Giai Petit Summary ,Recent research suggests that increasing conduit tapering progressively reduces hydraulic constraints caused by tree height. Here, we tested this hypothesis using the tallest hardwood species, Eucalyptus regnans. ,Vertical profiles of conduit dimensions and vessel density were measured for three mature trees of height 47, 51 and 63 m. ,Mean hydraulic diameter (Dh) increased rapidly from the tree apex to the point of crown insertion, with the greatest degree of tapering yet reported (b > 0.33). Conduit tapering was such that most of the total resistance was found close to the apex (82,93% within the first 1 m of stem) and the path length effect was reduced by a factor of 2000. Vessel density (VD) declined from the apex to the base of each tree, with scaling parameters being similar for all trees (a = 4.6; b = ,0.5). ,Eucalyptus regnans has evolved a novel xylem design that ensures a high hydraulic efficiency. This feature enables the species to grow quickly to heights of 50,60 m, beyond the maximum height of most other hardwood trees. [source] The hydraulic architecture of Juniperus communis L. ssp. communis: shrubs and trees comparedPLANT CELL & ENVIRONMENT, Issue 11 2008BARBARA BEIKIRCHER ABSTRACT Juniperus communis ssp. communis can grow like a shrub or it can develop a tree-like habit. In this study, the hydraulic architecture of these contrasting growth forms was compared. We analysed the hydraulic efficiency (leaf-specific conductivity, kl; specific conductivity, ks; Huber value, HV) and the vulnerability to cavitation (the water potential corresponding to a 50% loss of conductivity, ,50), as well as anatomical parameters [mean tracheid diameter, d; mean hydraulic diameter, dh; cell wall reinforcement (t/b)h2] of shrub shoots, tree stems and tree branches. Shrub shoots were similar to tree branches (especially to lower branches) in growth form and conductivity (kl = 1.93 ± 0.11 m2 s,1 MPa,1 10,7, ks = 5.71 ± 0.19 m2 s,1 MPa,1 10,4), but were similar to tree stems in their vulnerability to cavitation (,50 = ,5.81 ± 0.08 MPa). Tree stems showed extraordinarily high kl and ks values, and HV increased from the base up. Stem xylem was more vulnerable to cavitation than branch xylem, where ,50 increased from lower (,50 = ,6.44 ± 0.19 MPa) to upper branches (,50 = ,5.98 ± 0.13 MPa). Conduit diameters were correlated with kl and ks. Data indicate that differences in hydraulic architecture correspond to changes in growth form. In some aspects, the xylem hydraulics of tree-like Juniperus communis differs from that of other coniferous tree species. [source] Stereological comparison of 3D spatial relationships involving villi and intervillous pores in human placentas from control and diabetic pregnanciesJOURNAL OF ANATOMY, Issue 2 2000TERRY M. MAYHEW In human placenta, 3D spatial relationships between villi and the maternal vascular bed determine intervillous porosity and this, in turn, influences haemodynamics and transport. Recently-developed stereological methods were applied in order to examine and quantify these relationships. Placentas were collected after 37 wk from control pregnancies and those associated with maternal diabetes mellitus classified according to duration and severity (White classification scheme). Two principal questions were addressed: (1) are normal spatial arrangements maintained in well-controlled diabetes mellitus? and (2) do arrangements vary between diabetic groups? To answer these questions, tissue sections cut at random positions and orientations were generated by systematic sampling procedures. Volume densities of villi (terminal+intermediate), intervillous spaces and perivillous fibrin-type fibrinoid deposits were estimated by test point counting and converted to global volumes after multiplying by placental volumes. Design-based estimates of the sizes (volume- and surface-weighted volumes) of intervillous ,pores' were obtained by measuring the lengths of point- and intersection-sampled intercepts. From these, theoretical numbers of pores were calculated. Model-based estimates (cylinder model) of the hydraulic diameters and lengths of pores were also made. Second-order stereology was used to examine spatial relationships within and between villi and pores and to test whether pair correlation functions deviated from the value expected for ,random' arrangements. Estimated quantities did not differ significantly between diabetic groups but did display some departures from control values in non-insulin-dependent (type 2) diabetic placentas. These findings support earlier studies which indicate that essentially normal microscopical morphology is preserved in placentas from diabetic subjects with good glycaemic control. Therefore, it is likely that fetal hypoxia associated with maternal diabetes mellitus is due to metabolic disturbances rather than abnormalities in the quantities or arrangements of maternal vascular spaces. [source] Flow distribution and mass transfer in a parallel microchannel contactor integrated with constructal distributorsAICHE JOURNAL, Issue 2 2010Jun Yue Abstract Flow distribution and mass transfer characteristics during CO2 -water flow through a parallel microchannel contactor integrated with two constructal distributors have been investigated numerically and experimentally. Each distributor comprises a dichotomic tree structure that feeds 16 microchannels with hydraulic diameters of 667 ,m. It was found that constructal distributors could ensure a nearly uniform gas,liquid distribution at high gas flow rates where the ideal flow pattern was slug-annular flow. Nevertheless, at small gas flow rates where the ideal flow pattern was slug flow, a significant flow maldistribution occurred primarily due to the lack of large pressure barrier inside each distributor, indicating that dynamic pressure fluctuation in parallel microchannels greatly disturbed an otherwise good flow distribution therein. It was further shown that the present parallel microchannel contactor could realize the desired mass transfer performance previously achieved in one single microchannel under relatively wide operational ranges due to the integration of constructal distributors. © 2009 American Institute of Chemical Engineers AIChE J, 2010 [source] Oil,water two-phase flow in microchannels: Flow patterns and pressure drop measurementsTHE CANADIAN JOURNAL OF CHEMICAL ENGINEERING, Issue 6 2008Abdelkader Salim Abstract This paper investigates oil,water two-phase flows in microchannels of 793 and 667 µm hydraulic diameters made of quartz and glass, respectively. By injecting one fluid at a constant flow rate and the second at variable flow rate, different flow patterns were identified and mapped and the corresponding two-phase pressure drops were measured. Measurements of the pressure drops were interpreted using the homogeneous and Lockhart,Martinelli models developed for two-phase flows in pipes. The results show similarity to both liquid,liquid flow in pipes and to gas,liquid flow in microchannels. We find a strong dependence of pressure drop on flow rates, microchannel material, and the first fluid injected into the microchannel. On étudie dans cet article les écoulements diphasiques huile-eau dans des micro-canaux de 793 µm et 667 µm de diamètre hydraulique faits de quartz et de verre, respectivement. En injectant un fluide à un débit constant et le second à un débit variable, différents schémas d'écoulements ont été observés et représentés en diagrammes, et les pertes de charge diphasiques correspondantes ont été mesurées. Les mesures de perte de charge ont été interprétées à l'aide du modèle homogène et du modèle de Lockhart,Martinelli mis au point pour les écoulements diphasiques dans les conduites. Les résultats montrent une similarité à la fois avec l'écoulement liquide-liquide et l'écoulement liquide de gaz dans des micro-canaux. On a trouvé une forte dépendance de la perte de charge aux débits, au matériau des micro-canaux et au premier fluide injecté dans le micro-canal. [source] |