Hydration Process (hydration + process)

Distribution by Scientific Domains


Selected Abstracts


One-Dimensional Oxalato-Bridged Metal(II) Complexes with 4 - Amino-1,2,4-triazole as Apical Ligand

EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 21 2005
Urko García-Couceiro
Abstract The synthesis, chemical characterization, thermal behavior and magnetic properties of six new one-dimensional oxalato-bridged metal(II) complexes of formula [M(,-ox)(4atr)2]n [MII = Cu (1), Ni (2), Co (3), Zn (4), Fe(5)] and [Cd(,-ox)(4atr)2(H2O)]n (6) (ox = oxalato dianion, 4atr = 4-amino-1,2,4-triazole) are reported. The crystal structures of 1 and 6 have been solved by single-crystal X-ray diffraction, whereas the remaining compounds have been studied by means of X-ray powder diffraction methods. Compounds 1,5 are isomorphous and crystallize in the triclinic space group P1¯ with unit cell parameters for 1 of a = 5.538(1) Å, b = 7.663(1) Å, c = 7.711(2) Å, , = 62.21(1)°, , = 73.91(1)°, , = 86.11(1)°, and Z = 1. The crystal structures are comprised of one-dimensional linear chains in which the trans -[M(4atr)2]2+ units are sequentially bridged by bis(bidentate) oxalato ligands, resulting in an octahedral O4N2 donor set. Cryomagnetic susceptibility measurements show the occurrence of antiferromagnetic intrachain interactions for 2, 3, and 5, whereas compound 1 exhibits a weak ferromagnetic coupling in agreement with the out-of-plane exchange pathway involved. The magnetic behavior of 1 and 2 is analyzed and discussed in the light of the available magneto-structural data for analogous systems. CdII complex crystallizes in the monoclinic space group C2/c with unit cell parameters of a = 16.128(2) Å, b = 6.757(1) Å, c = 11.580(2) Å, , = 104.46(1)°, and Z = 4. Its crystal structure contains one-dimensional chains in which metal centers are heptacoodinated to four oxygen atoms from two symmetry-related bis(bidentate) oxalato bridges, two endocyclic nitrogen atoms of trans -coordinated triazole ligands and one water molecule, to give a CdO4OwN2 pentagonal-bipyramidal geometry. Thermoanalytical and variable-temperature X-ray powder diffraction analyzes show that compound 6 undergoes a reversible dehydration,hydration process in which the anhydrous residue crystallizes with a different crystal lattice retaining the dimensionality of the oxalato,metal framework. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2005) [source]


Growth of Cement Hydration Products on Single-Walled Carbon Nanotubes

JOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 6 2009
Jonathan M. Makar
Single-walled carbon nanotubes (SWCNT) were distributed on the surface of ordinary Portland cement (OPC) grains. The OPC/SWCNT composite was then hydrated at a 0.5 w/c ratio. The effects of the SWCNT on the early hydration process were studied using isothermal conduction calorimetry, high-resolution scanning electron microscopy and thermogravimetric analysis. The observed behavior of the composite samples was compared with both OPC sonicated without SWCNT and previously published data on as-delivered OPC. The SWCNT were found to accelerate the hydration reaction of the C3S in the OPC. The morphology of both the initial C3A and the C3S hydration products were found to be affected by the presence of the SWCNT. In particular, the nanotubes appeared to act as nucleating sites for the C3S hydration products, with the nanotubes becoming rapidly coated with C,S,H. The resulting structures remained on the surface of the cement grains while those in the sonicated and as-delivered OPC samples grew out from the grain surfaces to form typical C,S,H clusters. Classical evidence of reinforcing behavior, in the form of fiber pullout of the SWCNT bundles, was observed by 24 h of hydration. [source]


Chemical Speciation of Trace Zinc in Ordinary Portland Cement Using X-ray Absorption Fine Structure Analysis

JOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 12 2004
Isao Tsuyumoto
Chemical change of trace zinc in ordinary portland cement (205.1 ppm) was investigated in hydration process using X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS). Intensities of the peaks appearing at the same energy of ZnO in XANES spectra were decreased with cement hydration. The interatomic distances and the coordination numbers of the first and the second shells calculated from EXAFS spectra indicated that ZnO hydrolyzed to zincate ion [Zn(OH)4]2, with cement hydration keeping their fundamental structure of ZnO4 tetrahedra. [source]


FIB-Nanotomography of Particulate Systems,Part I: Particle Shape and Topology of Interfaces

JOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 8 2006
Lorenz Holzer
A new 3D-microscopy method, focused ion beam-nanotomography (FIB-nt), has been applied to the statistical particle shape analysis and for topological characterization of granular textures in cement samples. Because of its high resolution (15 nm), FIB-nt reveals precise microstructural information at the submicrometer scale, which cannot be obtained with conventional tomography methods. It is demonstrated that even from complex granular textures with dense agglomerates, it is possible to identify the individual sub-grains. This is the basis for reliable statistical shape analysis. For this purpose, moments of inertia were determined for particles from five different grain size fractions of a given cement, which provides important input data for future modeling of rheology and hydration processes. In addition, FIB-nt was used for topological characterization of the particle,particle interfaces in the dense and fine-grained granular textures. The unique 3D-data obtained with FIB-nt thus open new possibilities for quantitative microstructure analysis and the data can be used as structural input for object-oriented modeling. [source]


Thermogravimetric investigation of the hydration behaviour of hydrophilic matrices

JOURNAL OF PHARMACEUTICAL SCIENCES, Issue 4 2010
Lorena Segale
Abstract This article proposes thermogravimetric analysis (TGA) as a useful method to investigate the hydration behaviour of hydrophilic matrix tablets containing hydroxypropylmethylcellulose (HPMC), sodium carboxymethylcellulose (NaCMC) or a mixture of these two polymers and four drugs with different solubility. The hydration behaviour of matrix systems was studied as a function of the formulation composition and of the dissolution medium pH. TGA results suggest that the hydration of matrices containing HPMC is pH-independent and not affected by the characteristics of the loaded drug; this confirms HPMC as a good polymer to formulate controlled drug delivery systems. On the other hand, the performances of NaCMC matrix tablets are significantly affected by the medium pH and the hydration and swelling of this ionic polymer is influenced by the loaded drug. For systems containing the two polymers, HPMC plays a dominant role in the hydration/dissolution process at acidic pH, while at near neutral pH both the cellulose derivatives exert a significant influence on the hydration performance of systems. The results of this work show that TGA is able to give quantitative highlights on the hydration behaviour of polymeric materials; thus this technique could be a helpful tool to support conventional hydration/swelling/dissolution studies. © 2009 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 99: 2070,2079, 2010 [source]