Home About us Contact | |||
Hybrid Complex (hybrid + complex)
Selected AbstractsLight-driven Hydrogen Production by a Hybrid Complex of a [NiFe]-Hydrogenase and the Cyanobacterial Photosystem IPHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 3 2006Masaki Ihara ABSTRACT In order to generate renewable and clean fuels, increasing efforts are focused on the exploitation of photosynthetic microorganisms for the production of molecular hydrogen from water and light. In this study we engineered a ,hard-wired' protein complex consisting of a hydrogenase and photosystem I (hydrogenase-PSI complex) as a direct light-to-hydrogen conversion system. The key component was an artificial fusion protein composed of the membrane-bound [NiFe] hydrogenase from the ,-proteobacterium Ralstonia eutropha H16 and the peripheral PSI subunit PsaE of the cyanobacterium Thermosy-nechococcus elongatus. The resulting hydrogenase-PsaE fusion protein associated with PsaE-free PSI spontaneously, thereby forming a hydrogenase-PSI complex as confirmed by sucrosegradient ultracentrifuge and immunoblot analysis. The hydrogenase-PSI complex displayed light-driven hydrogen production at a rate of 0.58 ,mol H2· mg chlorophyll,1· h,1. The complex maintained its accessibility to the native electron acceptor ferredoxin. This study provides the first example of a light-driven enzymatic reaction by an artificial complex between a redox enzyme and photosystem I and represents an important step on the way to design a photosynthetic organism that efficiently converts solar energy and water into hydrogen. [source] Enhanced Optical Properties of a Photosynthetic System Conjugated with Semiconductor Nanoparticles: The Role of Förster Transfer,ADVANCED MATERIALS, Issue 22 2008Alexander O. Govorov The rate of optical generation of electron--hole pairs inside a photosynthetic system can be greatly increased through conjugation with nanoparticles. The enhancement stems from much larger optical absorption cross section of a semiconductor nanoparticle compared to a photosynthetic system. In the hybrid complex, excitons are transferred via the Förster mechanism to the photosynthetic system, where charge separation takes place. [source] Allochronic differentiation among Daphnia species, hybrids and backcrosses: the importance of sexual reproduction for population dynamics and genetic architectureJOURNAL OF EVOLUTIONARY BIOLOGY, Issue 2 2004T. Jankowski Abstract Seasonal dynamics of the abundance, sexual reproduction and genetic architecture in a Daphnia hyalina-galeata hybrid complex were studied in the large and deep Lake Constance. We found evidence for the occurrence of first and second order hybridization. Our study revealed strong differences between the parental species not only regarding their seasonal dynamics, genetic architecture and diversity, but also their sexual reproductive behaviour. The overwintering D. hyalina showed low genetic diversity, no genetic differentiation during the season, and reproduced sexually in autumn, whereas D. galeata reached higher levels of genetic diversity, reproduced sexually in early summer, and exhibited changes in genetic structure during the season, but was only present from spring to autumn. However, in both species sexual reproduction was a rare event, and daphnids, including hybrids, reproduced predominantly asexually. This allows long-term persistence of hybrids as well without continuing hybridization events. Within all variables studied, F1 and F2 hybrids showed an intermediate pattern, whereas proposed backcross hybrids were more similar to their respective parentals. These differences in phenotype as well as significant differences in pairwise Fst values between parentals suggest that gene flow seems to be relatively low in the Lake Constance hybrid system. We found evidence for unidirectional introgression by backcrossing from D. galeata to D. hyalina and found a decrease in at least one of the proposed introgressed alleles in the hyalina -backcross while the season progressed. Our findings suggest allochronic differentiation within this hybrid population and different microevolutionary trajectories of the parental species, which will be discussed in the light of the ongoing reoligotrophication process of Lake Constance. [source] A three-dimensional hybrid framework based on novel [Co4Mo4] bimetallic oxide clusters with 3,5-bis(3-pyridyl)-1,2,4-triazole ligandsACTA CRYSTALLOGRAPHICA SECTION C, Issue 3 2009Quan-Guo Zhai In the title organic,inorganic hybrid complex, poly[[[,-3,5-bis(3-pyridyl)-1,2,4-triazole]tri-,3 -oxido-tetra-,2 -oxido-oxidodicobalt(II)dimolybdenum(VI)] monohydrate], {[Co2Mo2O8(C12H9N5)]·H2O}n, the asymmetric unit is composed of two CoII centers, two [MoVIO4] tetrahedral units, one neutral 3,5-bis(3-pyridyl)-1,2,4-triazole (BPT) ligand and one solvent water molecule. The cobalt centers both exhibit octahedral [CoO5N] coordination environments. Four CoII and four MoVI centers are linked by ,2 -oxide and/or ,3 -oxide bridges to give an unprecedented bimetallic octanuclear [Co4Mo4O22N4] cluster, which can be regarded as the first example of a metal-substituted octamolybdate and exhibits a structure different from those of the eight octamolybdate isomers reported to date. The bimetallic oxide clusters are linked to each other through corner-sharing to give two-dimensional inorganic layers, which are further bridged by trans -BPT ligands to generate a three-dimensional organic,inorganic hybrid architecture with six-connected distorted ,-Po topology. [source] Structure of the ribosomal protein L1,mRNA complex at 2.1,Å resolution: common features of crystal packing of L1,RNA complexesACTA CRYSTALLOGRAPHICA SECTION D, Issue 12 2006S. Tishchenko The crystal structure of a hybrid complex between the bacterial ribosomal protein L1 from Thermus thermophilus and a Methanococcus vannielii mRNA fragment containing an L1-binding site was determined at 2.1,Å resolution. It was found that all polar atoms involved in conserved protein,RNA hydrogen bonds have high values of density in the electron-density map and that their hydrogen-bonding capacity is fully realised through interactions with protein atoms, water molecules and K+ ions. Intermolecular contacts were thoroughly analyzed in the present crystals and in crystals of previously determined L1,RNA complexes. It was shown that extension of the RNA helices providing canonical helix stacking between open,open or open,closed ends of RNA fragments is a common feature of these and all known crystals of complexes between ribosomal proteins and RNAs. In addition, the overwhelming majority of complexes between ribosomal proteins and RNA molecules display crystal contacts formed by the central parts of the RNA fragments. These contacts are often very extensive and strong and it is proposed that they are formed in the saturated solution prior to crystal formation. [source] An Unprecedented 2D 4f-3d-5d Multimetal-Isonicotinic Acid Complex: Synthesis, Structural Characterization and Magnetic PropertiesCHINESE JOURNAL OF CHEMISTRY, Issue 9 2008Wen-Tong CHEN Abstract A novel heterometallic metal-isonicotinic acid inorganic-organic hybrid complex [Zn0.5(H2O)]{(Hg2Cl5)- [Er(C6NO2H4)3(H2O)2]}(HgCl2)·0.5CH3OH·0.5H2O (1) has been successfully synthesized via a hydrothermal reaction and structurally characterized by single-crystal X-ray diffraction. Complex 1 crystallizes in the space group C2/c of the monoclinic system with eight formula units in a cell: a=34.165(4) Å, b=9.4692(8) Å, c=24.575(3) Å, , =115.090(5)°, V=7200(1) Å3, C18.50H21Cl7ErHg3N3O10Zn0.50, Mr=1495.25, Dc=2.759 g/cm3, T=293(2) K, µ(Mo K,) =15.954 mm,1, F(000) =5400 and R1/wR2=0.0561/0.0909 for 3157 observed reflections [I>2,(I)] and 6468 unique reflections. Complex 1 is characteristic of a novel 2D {(Hg2Cl5)[Er(C6NO2H4)3(H2O)2]} layered structure constructed from the [Er(C6NO2H4)3(H2O)2] chains interconnected by the Hg2Cl5, linkers. The 2D {(Hg2Cl5)[Er(C6NO2H4)3(H2O)2]} layers, mercury chloride and the lattice water molecules are held together via hydrogen bonds to form a three-dimensional framework with the methanol molecules and the hydrated zinc ions located in the cavities. The magnetic properties show that complex 1 exhibits antiferromagnetic-like interactions. [source] The Vps4 C-terminal helix is a critical determinant for assembly and ATPase activity and has elements conserved in other members of the meiotic clade of AAA ATPasesFEBS JOURNAL, Issue 7 2008Parimala R. Vajjhala Sorting of membrane proteins into intralumenal endosomal vesicles, multivesicular body (MVB) sorting, is critical for receptor down regulation, antigen presentation and enveloped virus budding. Vps4 is an AAA ATPase that functions in MVB sorting. Although AAA ATPases are oligomeric, mechanisms that govern Vps4 oligomerization and activity remain elusive. Vps4 has an N-terminal microtubule interacting and trafficking domain required for endosome recruitment, an AAA domain containing the ATPase catalytic site and a , domain, and a C-terminal , helix positioned close to the catalytic site in the 3D structure. Previous attempts to identify the role of the C-terminal helix have been unsuccessful. Here, we show that the C-terminal helix is important for Vps4 assembly and ATPase activity in vitro and function in vivo, but not endosome recruitment or interactions with Vta1 or ESCRT-III. Unlike the , domain, which is also important for Vps4 assembly, the C-terminal helix is not required in vivo for Vps4 homotypic interaction or dominant-negative effects of Vps4,E233Q, carrying a mutation in the ATP hydrolysis site. Vta1 promotes assembly of hybrid complexes comprising Vps4,E233Q and Vps4 lacking an intact C-terminal helix in vitro. Formation of catalytically active hybrid complexes demonstrates an intersubunit catalytic mechanism for Vps4. One end of the C-terminal helix lies in close proximity to the second region of homology (SRH), which is important for assembly and intersubunit catalysis in AAA ATPases. We propose that Vps4 SRH function requires an intact C-terminal helix. Co-evolution of a distinct Vps4 SRH and C-terminal helix in meiotic clade AAA ATPases supports this possibility. [source] Insights into the design of a hybrid system between Anabaena ferredoxin-NADP+ reductase and bovine adrenodoxinFEBS JOURNAL, Issue 4 2003Merche Faro The opportunity to design enzymatic systems is becoming more feasible due to detailed knowledge of the structure of many proteins. As a first step, investigations have aimed to redesign already existing systems, so that they can perform a function different from the one for which they were synthesized. We have investigated the interaction of electron transfer proteins from different systems in order to check the possibility of heterologous reconstitution among members of different chains. Here, it is shown that ferredoxin-NADP+ reductase from Anabaena and adrenodoxin from bovine adrenal glands are able to form optimal complexes for thermodynamically favoured electron transfer reactions. Thus, electron transfer from ferredoxin-NADP+ reductase to adrenodoxin seems to proceed through the formation of at least two different complexes, whereas electron transfer from adrenodoxin to ferredoxin-NADP+ reductase does not take place due because it is a thermodynamically nonfavoured process. Moreover, by using a truncated adrenodoxin form (with decreased reduction potential as compared with the wild-type) ferredoxin-NADP+ reductase is reduced. Finally, these reactions have also been studied using several ferredoxin-NADP+ reductase mutants at positions crucial for interaction with its physiological partner, ferredoxin. The effects observed in their reactions with adrenodoxin do not correlate with those reported for their reactions with ferredoxin. In summary, our data indicate that although electron transfer can be achieved in this hybrid system, the electron transfer processes observed are much slower than within the physiological partners, pointing to a low specificity in the interaction surfaces of the proteins in the hybrid complexes. [source] |