Human Tumor Cells (human + tumor_cell)

Distribution by Scientific Domains

Terms modified by Human Tumor Cells

  • human tumor cell line

  • Selected Abstracts


    Synthesis, Cytotoxicity, and Apoptosis Induction in Human Tumor Cells by Geiparvarin Analogues

    CHEMISTRY & BIODIVERSITY, Issue 9 2004
    Giampietro Viola
    A series of geiparvarin analogues modified on the unsaturated alkenyloxy bridge, where a H-atom replaced the 3,-Me group, were synthesized and evaluated against a panel of human tumor cell lines in vitro. These compounds demonstrated a stronger increase in growth inhibitory activity when compared to the parent compound geiparvarin (8). In particular, the activity increased even further in the series of demethylated compounds when a Me substituent in the coumarin moiety is introduced. On the contrary, the same modifications exerted on the parent compound led to an activity reduction. Interestingly, the new derivatives proved to be fully inhibitory to drug-resistant cell lines, thus suggesting that they are not subject to the pump-mediating efflux of antitumor drugs. On the basis of their cytotoxic profiles, the most-active compounds were selected for further biological evaluation. The extracellular acidification rate by the new geiparvarin analogues was measured with the CytosensorTM microphysiometer. The new derivatives significantly increased the acidification rate during the 24,48,h of incubation in a concentration-dependent manner. Cell-cycle analysis, evaluated by flow cytometry, revealed a strong apoptotic induction by these compounds confirmed by DNA laddering and observation by electron microscopy. Interestingly, the apoptotic pathway did not appear to be mediated by the activation of caspase-3. [source]


    Mechanisms of gene amplification and evidence of coamplification in drug-resistant human osteosarcoma cell lines

    GENES, CHROMOSOMES AND CANCER, Issue 4 2009
    Claudia M. Hattinger
    Gene amplification and copy number changes play a pivotal role in malignant transformation and progression of human tumor cells by mediating the activation of genes and oncogenes, which are involved in many different cellular processes including development of drug resistance. Since doxorubicin (DX) and methotrexate (MTX) are the two most important drugs for high-grade osteosarcoma (OS) treatment, the aim of this study was to identify genes gained or amplified in six DX- and eight MTX-resistant variants of the human OS cell lines U-2OS and Saos-2, and to get insights into the mechanisms underlying the amplification processes. Comparative genomic hybridization techniques identified amplification of MDR1 in all six DX-resistant and of DHFR in three MTX-resistant U-2OS variants. In addition, progressive gain of MLL was detected in the four U-2OS variants with higher resistance levels either to DX or MTX, whereas gain of MYC was found in all Saos-2 MTX-resistant variants and the U-2OS variant with the highest resistance level to DX. Fluorescent in situ hybridization revealed that MDR1 was amplified in U-2OS and Saos-2/DX-resistant variants manifested as homogeneously staining regions and double minutes, respectively. In U-2OS/MTX-resistant variants, DHFR was amplified in homogeneously staining regions, and was coamplified with MLL in relation to the increase of resistance to MTX. Gene amplification was associated with gene overexpression, whereas gene gain resulted in up-regulated gene expression. These results indicate that resistance to DX and MTX in human OS cell lines is a multigenic process involving gene copy number and expression changes. © 2008 Wiley-Liss, Inc. [source]


    MicroRNA-34a is an important component of PRIMA-1-induced apoptotic network in human lung cancer cells

    INTERNATIONAL JOURNAL OF CANCER, Issue 2 2010
    Wenrui Duan
    Abstract Restoration of p53 function in tumor cells would be an attractive strategy for lung cancer therapy because p53 mutations are found in more than 50% of lung cancers. The small molecule PRIMA-1 has been shown to restore the tumor suppression function of p53 and to induce apoptosis in human tumor cells. The mechanism of apoptosis induced by PRIMA-1 remains unclear. We investigated the effects of PRIMA-1 in apoptosis with Western immunoblot analysis, TaqMan microRNA real-time PCR, cell viability analysis and flow cytometry using human lung cancer cell lines containing mutant (H211 and H1155), wild-type (A549) or null (H1299) p53. PRIMA-1 induced massive apoptosis in the H211 and H1155 cells, but was less toxic to the A549 and H1299 cells. Western immunoblot analysis showed cleavage of PARP in H211 and H1155 cells but not in A549 and H1299 cells following treatment with PRIMA-1. In addition, p53 protein was also phosphorylated in H211 and H1155 cells. TaqMan microRNA assay showed that the expression of microRNA-34a was increased in the H211 and H1155 cells posttreatment. Knockdown microRNA-34a decreased the rate of apoptosis caused by PRIMA-1. The above results suggest that microRNA-34a is one of the important components of PRIMA-1-induced apoptotic network in the cancer cells harboring mutant p53. [source]


    Identification of a novel human tissue factor splice variant that is upregulated in tumor cells,

    INTERNATIONAL JOURNAL OF CANCER, Issue 7 2006
    Hitendra S. Chand
    Abstract Tissue factor (TF) is a transmembrane glycoprotein that serves as the prime initiator of blood coagulation and plays a critical role in thrombosis and hemostasis. In addition, a variety of tumor cells overexpress cell-surface TF, which appears to be important for tumor angiogenesis and metastasis. To elucidate the mechanism involved in the upregulation of TF in human tumor cells, a comprehensive analysis of TF mRNA from various normal and tumor cells was performed. The results of these studies indicate that, in addition to possessing a normal full-length TF transcript and minor levels of an alternatively spliced transcript known as alternatively-spliced tissue factor (asTF) (Bogdanov et al., Nat Med 2003;9:458,62), human tumor cells express additional full-length TF transcripts that are also generated by alternative splicing. Reverse transcriptase-polymerase chain reaction (RT-PCR) and 5,-rapid amplification of cDNA ends- (5,-RACE) based analyses of cytoplasmic RNA from normal and tumor cells revealed that there is alternative splicing of the first intron between exon I and exon II resulting in 2 additional TF transcripts. One of the transcripts has an extended exon I with inclusion of most of the first TF intron (955 bp), while the second transcript is formed by the insertion of a 495 bp sequence, referred to as exon IA, derived from an internal sequence of the first intron. The full length TF transcript with alternatively spliced novel exon IA, referred to as alternative exon 1A-tissue factor (TF-A), represented ,1% of the total TF transcripts in normal cells, but constituted 7,10% of the total TF transcript in tumor cells. Quantitative real-time RT-PCR analysis indicated that cultured human tumor cells contain 10,25-fold more copy numbers of TF-A in comparison to normal, untransformed cells. We propose that high-level expression of the novel TF-A transcript, preferentially in tumor cells, may have utility in the diagnosis and staging of a variety of solid tumors. © 2005 Wiley-Liss, Inc. [source]


    Expression and activity of IL-17 in cutaneous T-cell lymphomas (mycosis fungoides and sezary syndrome)

    INTERNATIONAL JOURNAL OF CANCER, Issue 1 2004
    Arnaud Cirée
    Abstract Interleukin-17 (IL-17) is a proinflammatory cytokine mainly produced by activated CD4+ CD45RO T cells. In mice, we have demonstrated that, depending on the model, IL-17 may act as a tumor growth-promoting or -inhibiting factor. In order to address the relevance of these models in human tumors, we look for the natural expression and activity of IL-17 in mycosis fungoides (MF) and Sezary syndrome (SS). These cutaneous T-cell lymphomas were selected because they are usually CD3+ CD4+ CD45RO+, a phenotype similar to nontransformed T cells producing IL-17. We show that in vitro activated malignant T cells derived from MF or SS patients express IL-17 mRNA and secrete this cytokine. However, IL-17 does not act in vitro as a growth factor for MF or SS cell lines. In addition, 5 out of 10 MF/SS biopsies expressed IL-17 mRNA, while this cytokine was not detected in normal skin. IL-17 was not observed in the biopsies derived from 2 patients initially identified as MF, whereas an upregulation of this cytokine was clearly demonstrated during progression of the disease in these patients. An association between IL-17 expression and polymorphonuclear neutrophil infiltration was also recorded in this group of MF/SS patients. A more detailed analysis of 2 patients with a pustular form of MF and SS revealed that IL-17 may participate in the recruitment of polymorphonuclear neutrophils via a paracrine mechanism involving keratinocyte-released IL-8. This study is the first report demonstrating that some human tumor cells could express IL-17, a cytokine that represents an early event in the development of the inflammatory reaction within the tumor microenvironment, a process that may influence tumor phenotype and growth. © 2004 Wiley-Liss, Inc. [source]


    Solamargine upregulation of Fas, downregulation of HER2, and enhancement of cytotoxicity using epirubicin in NSCLC cells

    MOLECULAR NUTRITION & FOOD RESEARCH (FORMERLY NAHRUNG/FOOD), Issue 8 2007
    Chia-Hua Liang
    Abstract Nonsmall-cell lung cancer (NSCLC) is not generally a chemosensitive tumor, and the mechanism of resistance to the relevant anticancer drugs has not been fully elucidated. Solamargine (SM), the major steroidal glycoalkaloids extracted from the Chinese herb Solanum, inhibits the growth of human tumor cells. We have previously demonstrated that SM regulates tumor necrosis factor receptors (TNFRs)- and mitochondria-mediated pathways and sensitizes NSCLC cells to initiate apoptosis. Interestingly, this investigation reveals that SM up-regulated Fas expression and down-regulated the expression of HER2, whose overexpression is associated with resistance to drugs, and promotes chemotherapy-induced apoptosis in NSCLC A549 and H441 cells. After treatment with SM, the expression of HER2 mRNA was correlated with the expression of topoisomerase II, (TOP2A) mRNA. The combinatory use of low concentrations of SM with low-toxic topoisomerase II inhibitor epirubicin accelerated apoptotic cell death. Therefore, the downregulation of the HER2 and TOP2A expression by SM with epirubicin may partially explain the SM and epirubicin cytotoxicity synergy effect in NSCLC. Results of this study suggest that SM induces Fas and TNFR-induced NSCLC cell apoptosis and reduces HER2 expression. These findings provide the synergistic therapeutic interaction between SM and epirubicin, suggesting that such combinations may be effectively exploited in future human cancer clinical trials. [source]


    Antiproliferative Effect of Furanocoumarins from the Root of Angelica dahurica on Cultured Human Tumor Cell Lines

    PHYTOTHERAPY RESEARCH, Issue 3 2007
    Young-Kyoon Kim
    Abstract A bioassay-guided fractionation of the root extract of Angelica dahurica (Umbelliferae) led to the isolation of six furanocoumarins as active ingredients responsible for the antitumoral property. The hexane soluble part of the extract demonstrated a signicant inhibition on the proliferation of cultured human tumor cells such as A549 (non small cell lung), SK-OV-3 (ovary), SK-MEL-2 (melanoma), XF498 (central nervous system) and HCT-15 (colon) in vitro, whereas the remaining water soluble part exhibited poor inhibition. Intensive investigation of the hexane soluble part of the extract yielded six furanocoumarins, i.e. isoimperatorin, cnidicin, imperatorin, oxypeucedanin, byakangelicol, oxypeucedanin hydrate, all of which exhibited a signicant inhibition on cell proliferation in a dose-dependent manner. Copyright © 2006 John Wiley & Sons, Ltd. [source]


    Down regulation of BRCA2 causes radio-sensitization of human tumor cells in vitro and in vivo

    CANCER SCIENCE, Issue 4 2008
    Dong Yu
    In order to study the role of BRCA2 protein in homologous recombination repair and radio-sensitization, we utilized RNA interference strategy in vitro and in vivo with human tumor cells. HeLa cells transfected with small-interfering BRCA2 NA (BRCA2 siRNA) (Qiagen) as well as negative-control siRNA for 48 h were irradiated, and several critical end points were examined. The radiation cell survival level was significantly reduced in HeLa cells with BRCA2 siRNA when compared with mock- or negative-control siRNA transfected cells. DNA double strand break repair as measured by constant field gel-electrophoresis showed a clear inhibition in cells with BRCA2 siRNA, while little inhibition was observed in cells with negative control siRNA. Our immuno-staining experiments revealed a significant delay in Rad51 foci formation in cells with BRCA2 siRNA when compared with the control populations. However, none of the non-homologous end joining proteins nor the phosphorylation of DNA-dependent protein kinase catalytic subunit was affected in cells transfected with BRCA2 siRNA. In addition, the combined treatment with radiation and BRCA2 siRNA in xenograft model with HeLa cells showed an efficient inhibition of in vivo tumor growth. Our results demonstrate down-regulation of BRCA2 leads to radio-sensitization mainly through the inhibition of homologous recombination repair type double-strand break repair; a possibility of using BRCA2 siRNA as an effective radiosensitizer in tumor radiotherapy may arise. (Cancer Sci 2008; 99: 810,815) [source]