Home About us Contact | |||
Human Ovarian Surface Epithelial Cells (human + ovarian_surface_epithelial_cell)
Selected AbstractsHuman ovarian surface epithelial cells immortalized with hTERT maintain functional pRb and p53 expressionCELL PROLIFERATION, Issue 5 2007N. F. Li Normal human ovarian surface epithelial (OSE) cells, which are thought to be the origin of most of human ovarian carcinomas, have a very limited lifespan in culture. Establishment of immortalized OSE cell lines has, in the past, required inactivation of pRb and p53 functions. However, this often leads to increased chromosome instability during prolonged culture. Materials and Methods:,In this study, we have used a retroviral infection method to overexpress human telomerase reverse transcriptase (hTERT) gene, in primary normal OSE cells, under optimized culture conditions. Results:,In vitro and in vivo analysis of hTERT-immortalized cell lines confirmed their normal epithelial characteristics. Gene expression profiles and functional analysis of p16INK4A, p15INK4B, pRb and p53 confirmed the presence of their intact functions. Our study suggests that inactivation of pRb and p53 is not necessary for OSE immortalization. Furthermore, down-regulation of p15INK4B in the immortalized cells may indicate a functional role for this protein in them. Conclusion:,These immortal OSE cell lines are likely to be an important tool for studying human OSE biology and carcinogenesis. [source] Multiple roles of the candidate oncogene ZNF217 in ovarian epithelial neoplastic progressionINTERNATIONAL JOURNAL OF CANCER, Issue 9 2007Peixiang Li Abstract The transcription factor ZNF217 is often amplified in ovarian cancer, but its role in neoplastic progression is unknown. We introduced ZNF217 -HA by adenoviral and retroviral infection into normal human ovarian surface epithelial cells (OSE), i.e., the source of ovarian cancer, and into SV40 Tag/tag expressing, p53/pRB-deficient OSE with extended but finite life spans (IOSE). In OSE, ZNF217-HA reduced cell,substratum adhesion and accelerated loss of senescent cells, but caused no obvious proneoplastic changes. In contrast, ZNF217-HA transduction into IOSE yielded two permanent lines, I-80RZ and I-144RZ, which exhibited telomerase activity, stable telomere lengths, anchorage independence and reduced serum dependence, but were not tumorigenic in SCID mice. This immortalization required short-term EGF treatment near the time of crisis. The permanent lines were EGF-independent, but ZNF217-dependent since siRNA to ZNF217 inhibited anchorage independence and arrested growth. Array CGH revealed genomic changes resembling those of ovarian carcinomas, such as amplicons at 3q and 20q, and deletions at 4q and 18, associated with underexpressed annexin A10, N-cadherin, desmocollin 3 and PAI-2, which have been reported as tumor suppressors. The lines overexpressed EEF1A2, SMARA3 and STAT1 and underexpressed other oncogenes, tumor suppressors and extracellular matrix/adhesion genes. The results implicate ZNF217 as an ovarian oncogene, which is detrimental to senescing normal OSE cells but contributes to neoplastic progression in OSE with inactivated p53/RB. The resemblance of the genomic changes in the ZNF217-overexpressing lines to ovarian carcinomas provides a unique model to investigate interrelationships between these changes and ovarian neoplastic phenotypes. © 2007 Wiley-Liss, Inc. [source] Expression of the nuclear export protein chromosomal region maintenance/exportin 1/Xpo1 is a prognostic factor in human ovarian cancerCANCER, Issue 8 2008Aurelia Noske MD Abstract BACKGROUND The human nuclear export protein chromosomal region maintenance/exportin 1/Xpo1 (CRM1) mediates the nuclear export of proteins and messenger RNAs and, thus, is an important regulator of subcellular distribution of key molecules. Whereas cell-biologic studies have suggested a fundamental role for CRM1 in the regulation of mitosis, the expression of this protein in human tumor tissue has not been investigated to date. METHODS In this study, the expression of CRM1 was analyzed in a cohort of 88 ovarian tumors and 12 ovarian cell lines for the first time to the authors' knowledge. RESULTS Immunohistochemistry revealed increased nuclear (52.7%) and cytoplasmic (56.8%) expression of CRM1 in 74 carcinomas compared with the expression revealed in borderline tumors and benign lesions. Similarly, CRM1 expression was increased in ovarian cancer cell lines compared with human ovarian surface epithelial cells. Cytoplasmic CRM1 expression was related significantly to advanced tumor stage (P = .043), poorly differentiated carcinomas (P = .011), and higher mitotic rate (P = .008). Nuclear CRM1 was associated significantly with cyclooxygenase-2 (COX-2) expression (P = .002) and poor overall survival (P = .01). Because it was demonstrated previously that blocking of CRM1 by leptomycin B (LMB) contributes to the inhibition of nuclear export, the authors used a set of mechanistic assays to study the effects of CRM1 inhibition in cancer cells. Treatment of OVCAR-3 cells with LMB revealed a significant reduction of cell proliferation and increased apoptosis as well as suppressed interleukin-1,-induced COX-2 expression. CONCLUSIONS The current results indicated that CRM1 is expressed in a subpopulation of ovarian carcinomas with aggressive behavior and is related to poor patient outcome. A correlation also was demonstrated between CRM1 and COX-2 expression in ovarian cancer tissue. Furthermore, the treatment of ovarian cancer cells with LMB revealed a reduction in COX-2 expression. Therefore, the authors suggest that CRM1 may be an interesting biomarker for the assessment of patient prognosis and a molecular target for anticancer treatment. Cancer 2008. © 2008 American Cancer Society. [source] In vitro three-dimensional modelling of human ovarian surface epithelial cellsCELL PROLIFERATION, Issue 3 2009K. Lawrenson Objectives:, Ninety percent of malignant ovarian cancers are epithelial and thought to arise from the ovarian surface epithelium (OSE). We hypothesized that biological characteristics of primary OSE cells would more closely resemble OSE in vivo if established as three-dimensional (3D) cultures. Materials and methods:, OSE cells were cultured as multicellular spheroids (MCS) (i) in a rotary cell culture system (RCCS) and (ii) on polyHEMA-coated plastics. The MCSs were examined by electron microscopy and compared to OSE from primary tissues and cells grown in 2D. Annexin V FACS analysis was used to evaluate apoptosis and expression of extracellular matrix (ECM) proteins was analysed by immunohistochemical staining. Results:, On polyHEMA-coated plates, OSE spheroids had defined internal architecture. RCCS MCSs had disorganized structure and higher proportion of apoptotic cells than polyHEMA MCSs and the same cells grown in 2D culture. In 2D, widespread expression of AE1/AE3, laminin and vimentin were undetectable by immunohistochemistry, whereas strong expression of these proteins was observed in the same cells grown in 3D culture and in OSE on primary tissues. Conclusions:, Physiological and biological features of OSE cells grown in 3D culture more closely resemble characteristics of OSE cells in vivo than when grown by classical 2D approaches. It is likely that establishing in vitro 3D OSE models will lead to greater understanding of the mechanisms of neoplastic transformation in epithelial ovarian cancers. [source] |