Home About us Contact | |||
Human Ovarian Cancer Cells (human + ovarian_cancer_cell)
Selected AbstractsInfluence of the Diketonato Ligand on the Cytotoxicities of [Ru(,6 - p -cymene)(R2acac)(PTA)]+ Complexes (PTA = 1,3,5-triaza-7-phosphaadamantane)EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 10 2008Carsten A. Vock Abstract A series of compounds of general formula [Ru(,6 - p -cymene)(R2acac)(PTA)][X] (R2acac = Me2acac, tBu2acac, Ph2acac, Me2acac-Cl; PTA = 1,3,5-triaza-7-phosphaadamantane; X = BPh4, BF4), and the precursor to the Me2acac-Cl derivative [Ru(,6 - p -cymene)(Me2acac-Cl)Cl], have been prepared and characterised spectroscopically. Five of the compounds have also been characterised in the solid state by X-ray crystallography. The tetrafluoroborate salts are water-soluble, quite resistant to hydrolysis, and have been evaluated for cytotoxicity against A549 lung carcinoma and A2780 human ovarian cancer cells. The compounds are cytotoxic towards the latter cell line, and relative activities are discussed in terms of hydrolysis (less important) and lipophilicity, which appears to exert the dominating influence. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2008) [source] Genetic changes in the evolution of multidrug resistance for cultured human ovarian cancer cellsGENES, CHROMOSOMES AND CANCER, Issue 12 2007Timon P. H. Buys The multidrug resistant (MDR) phenotype is often attributed to the activity of ATP-binding cassette (ABC) transporters such as P-glycoprotein (ABCB1). Previous work has suggested that modulation of MDR may not necessarily be a single gene trait. To identify factors that contribute to the emergence of MDR, we undertook integrative genomics analysis of the ovarian carcinoma cell line SKOV3 and a series of MDR derivatives of this line (SKVCRs). As resistance increased, comparative analysis of gene expression showed conspicuous activation of a network of genes in addition to ABCB1. Functional annotation and pathway analysis revealed that many of these genes were associated with the extracellular matrix and had previously been implicated in tumor invasion and cell proliferation. Further investigation by whole genome tiling-path array CGH suggested that changes in gene dosage were key to the activation of several of these overexpressed genes. Remarkably, alignment of whole genome profiles for SKVCR lines revealed the emergence and decline of specific segmental DNA alterations. The most prominent alteration was a novel amplicon residing at 16p13 that encompassed the ABC transporter genes ABCC1 and ABCC6. Loss of this amplicon in highly resistant SKVCR lines coincided with the emergence of a different amplicon at 7q21.12, which harbors ABCB1. Integrative analysis suggests that multiple genes are activated during escalation of drug resistance, including a succession of ABC transporter genes and genes that may act synergistically with ABCB1. These results suggest that evolution of the MDR phenotype is a dynamic, multi-genic process in the genomes of cancer cells. © 2007 Wiley-Liss, Inc. [source] Transforming growth factor-,1-dependent activation of Smad2/3 and up-regulation of PAI-1 expression is negatively regulated by Src in SKOV-3 human ovarian cancer cellsJOURNAL OF CELLULAR BIOCHEMISTRY, Issue 3 2004Kiyoshi Wakahara Abstract The net balance between urokinase-type plasminogen activator (uPA) and plasminogen activator inhibitor type-1 (PAI-1) has been implicated in tumor cell invasion and metastasis. To elucidate the mechanism of the transforming growth factor-,1 (TGF-,1)-dependent up-regulation of PAI-1 expression, we investigated which signaling pathway transduced by TGF-,1 is responsible for this effect. Here, we show (1) nontoxic concentrations of TGF-,1 up-regulates uPA expression in HRA and SKOV-3 human ovarian cancer cells, (2) TGF-,1 activates Smads (phosphorylation of Smad2 and nuclear translocation of Smad3) and subsequently up-regulates PAI-1 expression in HRA cells, whereas TGF-,1 neither activates Smads nor up-regulates PAI-1 in SKOV-3 cells, (3) pharmacological Src inhibitor PP2 or antisense (AS) c-Src oligodeoxynucleotide (ODN) treatment significantly induces TGF-,1-dependent activation of Smads, leading to PAI-1 synthesis, compared with controls, in SKOV-3 cells, (4) combination of TGF-,1 and PP2, which activates PAI-1 expression and reduces uPA expression in SKOV-3, results in decreased invasiveness, (5) pharmacological inhibitors for mitogen-activated protein kinase (MAPK) (PD98059) and phosphoinositide-3-kinase (PI3K) (LY294002 and wortmannin) or AS-PI3K ODN transfection do not affect TGF-,1-induced Smad signaling and up-regulation of PAI-1 expression in SKOV-3 cells pr treated with PP2, and (6) the induction of PAI-1 protein was partially inhibited by an inhibitor of Sp1-DNA binding, mithramycin, implicating, at least in part, Sp1 in the regulation of this gene by TGF-,1. In conclusion, TGF-,1-dependent activation of Smad2/3, leading to PAI-1 synthesis, may be negatively regulated by Src, but not its downstream targets MAPK and PI3K in SKOV-3 cells. These data also reflect the complex biological effect of uPA-PAI-1 system. © 2004 Wiley-Liss, Inc. [source] Synthesis and anticancer activity of chalcogenide derivatives and platinum(II) and palladium(II) complexes derived from a polar ferrocene phosphanyl,carboxamideAPPLIED ORGANOMETALLIC CHEMISTRY, Issue 5 2010í Schulz Abstract The polar phosphanyl-carboxamide, 1,-(diphenylphosphanyl)-1-[N -(2-hydroxyethyl)carbamoyl]ferrocene (1), reacts readily with hydrogen peroxide and elemental sulfur to give the corresponding phosphane-oxide and phosphane-sulfide, respectively, and with platinum(II) and palladium(II) precursors to afford various bis(phosphane) complexes [MCl2(1 -,P)2] (M = trans -Pd, trans -Pt and cis -Pt). The anticancer activity of the compounds was evaluated in vitro with the complexes showing moderate cytotoxicities towards human ovarian cancer cells. Moreover, the biological activity was found to be strongly influenced by the stereochemistry, with trans -[PtCl2(1 -,P)2] being an order of magnitude more active than the corresponding cis isomer. Copyright © 2010 John Wiley & Sons, Ltd. [source] Influence of the prodrugs 5-fluorocytosine and CPT-11 on ovarian cancer cells using genetically engineered stem cells: tumor-tropic potential and inhibition of ovarian cancer cell growthCANCER SCIENCE, Issue 4 2010Ki-Yon Kim Recent studies have shown that genetically engineered stem cells (GESTECs) to produce suicide enzymes that convert non-toxic prodrugs to toxic metabolites selectively migrate toward tumor sites and reduce tumor growth. In the present study, we evaluated whether these GESTECs were capable of migrating to human ovarian cancer cells and examined the potential therapeutic efficacy of the gene-directed enzyme prodrug therapy against ovarian cancer cells in vitro. The expression of cytosine deaminase (CD) or carboxyl esterase (CE) mRNA of GESTECs was confirmed by RT-PCR. A modified transwell migration assay was performed to determine the migratory capacity of GESTECs to ovarian cancer cells. GESTECs (HB1.F3.CD or HB1.F3.CE cells) engineered to express a suicide gene (CD or CE) selectively migrated toward ovarian cancer cells. A [3H] thymidine incorporation assay was conducted to measure the proliferative index. Treatment of human epithelial ovarian cancer cell line (SKOV-3, an ovarian adenocarcinoma derived from the ascites of an ovarian cancer patient) with the prodrugs 5-fluorocytosine (5-FC) or camptothecin-11 (CPT-11) in the presence of HB1.F3.CD or HB1.F3.CE cells resulted in the inhibition of ovarian cancer cell growth. Based on the data presented herein, we suggest that GESTECs expressing CD/CE may have a potent advantage to selectively treat ovarian cancers. (Cancer Sci 2010; 101: 955,962) [source] Syringolin A, a new plant elicitor from the phytopathogenic bacterium Pseudomonas syringae pv. syringae, inhibits the proliferation of neuroblastoma and ovarian cancer cells and induces apoptosisCELL PROLIFERATION, Issue 6 2006C. S. Coleman The goal of this study was to investigate whether syringolin A exhibits anti-proliferative properties in cancer cells. The treatment of human neuroblastoma (NB) cells (SK-N-SH and LAN-1) and human ovarian cancer cells (SKOV3) with syringolin A (0,100 µm) inhibited cell proliferation in a dose-dependent manner. The IC50 (50% inhibition) for each cell line ranged between 20 µm and 25 µm. In SK-N-SH cells, the treatment with 20 µm syringolin A led to a rapid (24 h) increase of the apoptosis-associated tumour suppressor protein p53. In addition, we found that the treatment of SK-N-SH cells caused severe morphological changes after 48 h such as rounding of cells and loss of adherence, both conditions observed during apoptosis. The induction of apoptosis by syringolin A was confirmed by both poly (ADP-ribose) polymerase (PARP) cleavage and annexin V assay. Taken together, we show for the first time that the natural product syringolin A exhibits anti-proliferative activity and induces apoptosis. Syringolin A and structurally modified syringolin A derivatives may serve as new lead compounds for the development of novel anticancer drugs. [source] |