Home About us Contact | |||
Human Glioma Cell Lines (human + glioma_cell_line)
Selected AbstractsEffects of prolactin on intracellular calcium concentration and cell proliferation in human glioma cellsGLIA, Issue 3 2002Thomas Ducret Abstract Prolactin (PRL) has several physiological effects on peripheral tissues and the brain. This hormone acts via its membrane receptor (PRL-R) to induce cell differentiation or proliferation. Using reverse transcription,polymerase chain reaction (RT-PCR) combined with Southern blot analysis, we detected PRL-R transcripts in a human glioma cell line (U87-MG) and in primary cultured human glioblastoma cells. These transcripts were deleted or not in their extracellular domains. We examined the effects of PRL on intracellular free Ca2+ concentration ([Ca2+]i) in these cells in order to improve our understanding of the PRL transduction mechanism, which is still poorly documented. [Ca2+]i was measured by microspectrofluorimetry using indo-1 as the Ca2+ fluorescent probe. Spatiotemporal aspects of PRL-induced Ca2+ signals were investigated using high-speed fluo-3 confocal imaging. We found that physiological concentrations (0.4,4 nM) of PRL-stimulated Ca2+ entry and intracellular Ca2+ mobilization via a tyrosine kinase,dependent mechanism. The two types of Ca2+ responses observed were distinguishable by their kinetics: one showing a slow (type I) and the other a fast (type II) increase in [Ca2+]i. The amplitude of PRL-induced Ca2+ increases may be sufficient to provoke several physiological responses, such as stimulating proliferation. Furthermore, PRL induced a dose-dependent increase in [3H]thymidine incorporation levels and in cellular growth and survival, detected by the MTT method. These data indicate that PRL induced mitogenesis of human glioma cells. GLIA 38:200,214, 2002. © 2002 Wiley-Liss, Inc. [source] RNAi-mediated inhibition of MSP58 decreases tumour growth, migration and invasion in a human glioma cell lineJOURNAL OF CELLULAR AND MOLECULAR MEDICINE, Issue 11-12 2009Wei Lin Abstract MSP58, a 58-kD nuclear microspherule protein, is an evolutionarily conserved nuclear protein implicated in the regulation of gene transcription as well as in malignant transformation. An analysis of mRNA expression by real-time PCR revealed that MSP58 was significantly up-regulated in 29% of high-grade glioblastoma tissues as well as in four glioblastoma cell lines. In the present study, we further evaluated the biological functions of MSP58 in U251 glioma cell proliferation, migration, invasion and tumour growth in vivo by specific MSP58 knockdown using short hairpin RNA (shRNA). We found that MSP58 depletion inhibited glioma cell growth, primarily by inducing cell cycle arrest rather than apoptosis. MSP58 depletion also decreased the invasive capability of glioma cells and anchorage-independent colony formation in soft agar. Moreover, suppression of MSP58 expression significantly impaired the growth of glioma xenografts in nude mice. Finally, a cell cycle-associated gene array revealed potential molecular mechanisms contributing to cell cycle arrest in MSP58-depleted glioma cells. In summary, our data highlight the importance of MSP58 in glioma progression and provided a biological basis for MSP58 as a novel candidate target for treatment of glioma. [source] Pleiotrophin, an angiogenic and mitogenic growth factor, is expressed in human gliomasJOURNAL OF NEUROCHEMISTRY, Issue 4 2002Rolf Mentlein Abstract Pleiotrophin (PTN) is a mitogenic/angiogenic, 15.3 kDa heparin-binding peptide that is found in embryonic or early postnatal, but rarely in adult, tissues. Since developmentally regulated factors often re-appear in malignant cells, we examined PTN expression in human glioma cell lines, cell cultures derived from solid gliomas and glioma sections. PTN mRNA or protein was detected by reverse transcriptase-polymerase chain reaction, immunohistochemistry, western blot or enzyme-linked immunoassay in all WHO III and IV grade gliomas and cells analyzed in vitro or in situ. One WHO II grade glioma investigated was PTN negative. In vitro, PTN was synthesized in perinuclear regions of glioma cells, secreted into the cultivation medium, but its production varied considerably between glioma cells cultivated from different solid gliomas or glioma cell lines. In situ, PTN expression was restricted to distinct parts/cells of the tumour. PTN did not influence the proliferation of glioma cells themselves, but stimulated [3H]thymidine incorporation into DNA of microglial cells. Furthermore, in Boyden chamber assays, PTN showed a strong chemotactic effect on murine BV-2 microglial cells. PTN is supposed to be a paracrine growth/angiogenic factor that is produced by gliomas and contributes to their malignancy by targeting endothelial and microglial cells. [source] Cooperative inhibitory effect of ZD1839 (Iressa) in combination with 17-AAG on glioma cell growth,MOLECULAR CARCINOGENESIS, Issue 5 2006Daniel R. Premkumar Abstract ZD1839 ("Iressa") is an orally active, selective epidermal growth factor (EGF) receptor-tyrosine kinase inhibitor. We evaluated the antitumor activity of ZD1839 in combination with HSP90 antagonist, 17-AAG in malignant human glioma cell lines. ZD1839 independently produced a dose-dependent inhibition of cellular proliferation in glioma cells grown in culture with time- and dose-dependent accumulation of cells in G1 phase of the cell cycle on flow cytometric analysis, although the concentrations required for optimal efficacy were at or above the limits of clinically achievable levels. Because the heat shock protein (HSP) is involved in the conformational maturation of a number of signaling proteins critical to the proliferation of malignant glioma cells, we hypothesized that the HSP90 inhibitor 17-AAG would potentiate ZD 1839-mediated glioma cytotoxicity by decreasing the activation status of EGF receptor, as well as downregulating the levels of other relevant signaling effectors. We, therefore, examined the effects of ZD1839 and 17-AAG, alone and in combination, on signal transduction and apoptosis in a series of malignant glioma cell lines. Simultaneous exposure to these inhibitors significantly induced cell death and quantitative analysis revealed that interaction between ZD1839 and 17-AAG-induced cytotoxicity was synergistic, leading to a pronounced increase in active caspase-3 and PARP cleavage. No significant growth inhibition or caspase activation was seen in control cells. The enhanced cytotoxicity of this combination was associated with diminished Akt activation and a significant downregulation of EGFR receptor, Raf-1 and mitogen activated protein kinase (MAPK). Cells exposed to 17-AAG and ZD1839 displayed a significant reduction in cell cycle regulatory proteins, such as CDK4 and CDK6. Taken together, these findings suggest that ZD1839, an EGF receptor tyrosine kinase inhibitor, plays a critical role in regulating the apoptotic response to 17-AAG and that multi-site targeting of growth signaling and cell survival pathways could provide a potent strategy to treat patients with malignant gliomas. © 2006 Wiley-Liss, Inc. [source] Vesicle amine transport protein-1 (VAT-1) is upregulated in glioblastomas and promotes migrationNEUROPATHOLOGY & APPLIED NEUROBIOLOGY, Issue 4 2009S. Mertsch Aim:,Diffuse invasion of single-glioma cells is the main obstacle to successful therapy of these tumours. After identifying vesicle amine transport protein-1 (VAT-1) as being upregulated in invasive human gliomas, we study its possible function in glioblastoma cell migration. Methods:,Based on data obtained from previous oligonucleotide arrays, we investigated expression of VAT-1 in glioblastoma tissue and cell lines on mRNA levels using reverse transcriptase PCR. Furthermore, we examined the amount and localization of VAT-1 protein using immunoblotting and immunohistochemistry. Using small interfering RNA technology we repressed VAT-1 expression in human glioma cell lines and analysed their migration using wound healing and transwell migration assays. Results:,Increased VAT-1 mRNA and protein levels were found in glioblastoma tissues and cell lines compared with normal human brain. Small interfering RNA-mediated VAT-1 knockdown led to significantly reduced migration of human glioma cells. Conclusions:,VAT-1 is overexpressed in glioblastomas and functionally involved in glioma cell migration, representing a new component involved in glioma invasion. [source] |