Human Esophageal Squamous Cell Carcinoma (human + esophageal_squamous_cell_carcinoma)

Distribution by Scientific Domains


Selected Abstracts


COX-2 mRNA expression in esophageal squamous cell carcinoma (ESCC) and effect by NSAID

DISEASES OF THE ESOPHAGUS, Issue 1 2008
X. Liu
SUMMARY., To investigate cyclooxygenase-2 (COX-2) mRNA expression in human esophageal squamous cell carcinoma and the effect of a non-steroidal anti-inflammatory drug (NSAID) on it, in order to explore the mechanism of COX-2 in esophageal squamous cell carcinoma (ESCC) carcinogenesis and the ability of NSAID to prevent or treat ESCC. Frozen specimens of human ESCC and adjacent normal esophageal squamous epithelium pairs (n = 22) were examined for COX-2 mRNA expression by reverse-transcription polymerase chain reaction (RT-PCR). After incubation with aspirin (a non-selective COX inhibitor) or Nimesulide (a selective COX-2 inhibitor), the proliferation status of two human esophageal squamous cancer cell lines, EC-9706 and EC-109, was quantified by 3-(4,5-dimethyl-thiazol-2yl)-2,5-diphenyltetrazolium bromide assay. The expression of COX-2 mRNA in these cells was detected by RT-PCR. COX-2 mRNA was expressed in 12 of 22 (54.5%) ESCC tissue samples, but it was undetectable in all the specimens of adjacent normal esophageal squamous epithelium COX-2 mRNA expression. Both aspirin (5,20 mmol/L) and Nimesulide (0.1,0.8 mmol/L) inhibited EC-9706 cell line proliferation and suppressed its COX-2 mRNA expression dose-dependently. However, only aspirin (5,20 mmol/L) could inhibit proliferation in the EC-109 cell line and suppress COX-2 mRNA expression. Nimesulide (0.1,0.8 mmol/L) could neither inhibit EC-109 cell growth nor suppress COX-2 mRNA expression. COX-2 mRNA expression is a frequent phenomenon in human ESCC tissue samples and plays an important role in the carcinogenesis of ESCC. NSAID may be useful in the chemoprevention and therapy of human ESCC and its effects are likely to be mediated by modulating COX-2 activity. [source]


Prostaglandin E2 promotes cell proliferation via protein kinase C/extracellular signal regulated kinase pathway-dependent induction of c-Myc expression in human esophageal squamous cell carcinoma cells

INTERNATIONAL JOURNAL OF CANCER, Issue 11 2009
Le Yu
Abstract Overexpression of cyclooxygenase-2 (COX-2) and elevation of its derivative prostaglandin E2 (PGE2) are implicated in human esophageal squamous cell carcinoma. The expression of c-Myc, an oncogenic transcription factor, is also upregulated in this malignant disease. This study sought to elucidate whether a functional connection exists between COX-2/PGE2 and c-Myc in esophageal squamous cell carcinoma. Results showed that PGE2 substantially increased the proliferation of cultured esophageal squamous cell carcinoma cells. In this regard, PGE2 substantially increased the mRNA and protein expression of c-Myc and its association with the binding partner Max. Knockdown of c-Myc by RNA interference also significantly attenuated PGE2 -induced cell proliferation. Further, mechanistic study revealed that PGE2 increased the protein stability and nuclear accumulation of c-Myc via phosphorylation on serine 62 in an extracellular signal regulated kinase (ERK)-dependent manner. To this end, ERK activation by PGE2 was completely abolished by protein kinase C (PKC) inhibitors. Moreover, the effect of PGE2 on c-Myc expression was mimicked by EP2 receptor agonist. In addition, knockdown of EP2 receptor by EP2 siRNA attenuated PGE2 -induced c-Myc expression. Collectively, our findings suggest that PGE2 upregulates c-Myc via the EP2/PKC/ERK pathway. This study sheds new light on the carcinogenic mechanism of PGE2 in esophageal squamous cell carcinoma. © 2009 UICC [source]


Targeting the epidermal growth factor receptor by erlotinib (TarcevaÔ) for the treatment of esophageal cancer

INTERNATIONAL JOURNAL OF CANCER, Issue 7 2006
Andreas P. Sutter
Abstract Esophageal cancer is the sixth most common cause of cancer-related death worldwide. Because of very poor 5-year survival new therapeutic approaches are mandatory. Erlotinib (TarcevaÔ), an inhibitor of epidermal growth factor receptor tyrosine kinase (EGFR-TK), potently suppresses the growth of various tumors but its effect on esophageal carcinoma, known to express EGFR, remains unexplored. We therefore studied the antineoplastic potency of erlotinib in human esophageal cancer cells. Erlotinib induced growth inhibition of the human esophageal squamous cell carcinoma (ESCC) cell lines Kyse-30, Kyse-70 and Kyse-140, and the esophageal adenocarcinoma cell line OE-33, as well as of primary cell cultures of human esophageal cancers. Combining erlotinib with the EGFR-receptor antibody cetuximab, the insulin-like growth factor receptor tyrosine kinase inhibitor tyrphostin AG1024, or the 3-hydroxy-3-methylglutaryl coenzyme. A reductase (HMG-CoAR) inhibitor fluvastatin resulted in additive or even synergistic antiproliferative effects. Erlotinib induced cell cycle arrest at the G1/S checkpoint. The erlotinib-mediated signaling involved the inactivation of EGFR-TK and ERK1/2, the upregulation of the cyclin-dependent kinase inhibitors p21Waf1/CIP1 and p27Kip1, and the downregulation of the cell cycle promoter cyclin D1. However, erlotinib did not induce immediate cytotoxicity or apoptosis in esophageal cancer cells. The inhibition of EGFR-TK by erlotinib appears to be a promising novel approach for innovative treatment strategies of esophageal cancer, as it powerfully induced growth inhibition and cell cycle arrest in human esophageal cancer cells and enhanced the antineoplastic effects of other targeted agents. © 2005 Wiley-Liss, Inc. [source]


Common single nucleotide polymorphism of hypoxia-inducible factor-1, and its impact on the clinicopathological features of esophageal squamous cell carcinoma

JOURNAL OF DIGESTIVE DISEASES, Issue 4 2005
Ting Sheng LING
OBJECTIVE: Angiogenesis is one of the most important molecular events in solid tumor development and growth, in which hypoxia-inducible factor (HIF)-1, is a key regulator and plays an important role. Studies have shown that a single nucleotide polymorphism (C1772T) in the HIF-1, gene exerts a large effect on the phenotype of human head and neck squamous cell carcinoma and renal cell carcinoma. But the impact of the C1772T polymorphism on the clinicopathological features of human esophageal squamous cell carcinoma (ESCC) remains unknown, and thus it is the main focus of our study. METHODS: The C1772T genotype of 95 ESCC patients and 104 healthy controls were studied by using the polymerase chain reaction and restriction fragment length polymorphism. Mutations were confirmed by direct DNA sequencing. The impact of C1772T on tumor size, invasive depth, lymph node metastasis, distant metastasis, histological grade and TNM stage was also studied. RESULTS: The genotype frequency observed in the patients and controls was 11.58% versus 10.58%, respectively, for genotype C/T (P > 0.05). Genotype T/T was not found in our study. Larger tumors and a higher rate of lymph node metastasis was found for the C/T group. CONCLUSIONS: Although there is no significant difference of genotype distribution between ESCC patients and healthy controls, genotype C/T is associated with larger tumor and higher rate of lymph node metastasis. [source]


Identification of some human genes oppositely regulated during esophageal squamous cell carcinoma formation and human embryonic esophagus development

DISEASES OF THE ESOPHAGUS, Issue 3 2010
M. V. Zinovyeva
SUMMARY Here we directly compared gene expression profiles in human esophageal squamous cell carcinomas and in human fetal esophagus development. We used the suppression subtractive hybridization technique to subtract cDNAs prepared from tumor and normal human esophageal samples. cDNA sequencing and reverse transcription polymerase chain reaction (RT-PCR) analysis of RNAs from human tumor and the normal esophagus revealed 10 differentially transcribed genes: CSTA, CRNN, CEACAM1, MAL, EMP1, ECRG2, and SPRR downregulated, and PLAUR, SFRP4, and secreted protein that is acidic and rich in cysteine upregulated in tumor tissue as compared with surrounding normal tissue. In turn, genes up- and downregulated in tumor tissue were down- and upregulated, respectively, during development from the fetal to adult esophagus. Thus, we demonstrated that, as reported for other tumors, gene transcriptional activation and/or suppression events in esophageal tumor progression were opposite to those observed during development from the fetal to adult esophagus. This tumor ,embryonization' supports the idea that stem or progenitor cells are implicated in esophageal cancer emergence. [source]


Intratumoral lymphangiogenesis of esophageal squamous cell carcinoma and relationship with regulatory factors and prognosis

PATHOLOGY INTERNATIONAL, Issue 10 2008
Akemi Inoue
The clinical and pathological significance of intratumoral lymphangiogenesis (ITL) with human esophageal squamous cell carcinomas (ESCC) remains unclear, as does the role of signaling molecules such as vascular endothelial growth factor (VEGF)-A,C, platelet-derived growth factor (PDGF)-A, and p53, in the regulation of ITL. Lymphatic vessel density (LVD) was significantly increased in VEGF-A and VEGF-C immunohistochemical score 1 and 2,3 groups as compared to the score 0 group and also with high of VEGF-A, VEGF-C and PDGF-A mRNA expression. Both LVD and blood vessel density (BVD) were significantly greater in the p53 gene mutant group than in the wild-type group. Lymph node metastasis was significantly more frequent with than without ITL and Kaplan,Meier analysis indicated a significantly poorer prognosis. Multivariate analysis using Cox proportional hazard method showed that invasion depth, lymph node metastasis and ITL were independent prognostic factors. [source]


Expression of non-mast cell histidine decarboxylase in tumor-associated microvessels in human esophageal squamous cell carcinomas,

APMIS, Issue 12 2008
ZHENFENG LI
Histamine is produced by mast cells and many other types of cells. The role of histamine released from mast cells in promoting tumor angiogenesis has been intensively studied; however, the role of non-mast cell histamine in regulating tumor angiogenesis has been largely ignored. In this study, tissue specimen sections from 43 patients with esophageal squamous cell carcinoma (ESCC) and normal esophageal biopsies from 17 heath individuals obtained from a high incidence area of north China were used to assess changes in microvessel density (MVD) and non-mast cell L-histidine decarboxylase (HDC) (the only rate-limiting enzyme that catalyzes the formation of histamine from L-histidine) expression in the tumor microenvironment by immunohistochemistry (IHC). In addition, the cellular characterization of non-mast cell HDC-positive cells in microvessels was examined by double IHC combined with HDC/CD34 and HDC/PCNA antibodies. These IHC analyses revealed a significantly increased HDC-positive MVD in ESCC as compared with normal controls, which accounted for ,61% of CD34-labeled general MVD in ESCC. Furthermore, IHC in serial sections and double IHC showed that most of these HDC-positive cells were CD34-positive endothelial cells in microvessels with an increased proliferative capacity. Thus, our results suggest that non-mast cell histamine expressed in endothelial cells of microvessels could be an additional cellular source and might play a role in regulating angiogenesis in ESCC. [source]