Human Airways (human + airway)

Distribution by Scientific Domains

Terms modified by Human Airways

  • human airway epithelial cell

  • Selected Abstracts


    Molecular response of nasal mucosa to therapeutic exposure to broad-band ultraviolet radiation

    JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, Issue 1-2 2010
    David Mitchell
    Abstract Ultraviolet radiation (UVR) phototherapy is a promising new treatment for inflammatory airway diseases. However, the potential carcinogenic risks associated with this treatment are not well understood. UV-specific DNA photoproducts were used as biomarkers to address this issue. Radioimmunoassay was used to quantify cyclobutane pyrimidine dimers (CPDs) and (6,4) photoproducts in DNA purified from two milieus: nasal mucosa samples from subjects exposed to intranasal phototherapy and human airway (EpiAirwayÔ) and human skin (EpiDermÔ) tissue models. Immunohistochemistry was used to detect CPD formation and persistence in human nasal biopsies and human tissue models. In subjects exposed to broadband ultraviolet radiation, DNA damage frequencies were determined prior to as well as immediately after treatment and at increasing times post-treatment. We observed significant levels of DNA damage immediately after treatment and efficient removal of the damage within a few days. No residual damage was observed in human subjects exposed to multiple UVB treatments several weeks after the last treatment. To better understand the molecular response of the nasal epithelium to DNA damage, parallel experiments were conducted in EpiAirway and EpiDerm model systems. Repair rates in these two tissues were very similar and comparable to that observed in human skin. The data suggest that the UV-induced DNA damage response of respiratory epithelia is very similar to that of the human epidermis and that nasal mucosa is able to efficiently repair UVB induced DNA damage. [source]


    Sialic acid tissue distribution and influenza virus tropism

    INFLUENZA AND OTHER RESPIRATORY VIRUSES, Issue 5 2008
    Urban Kumlin
    Abstract, Avian influenza A viruses exhibit a strong preference for using ,2,3-linked sialic acid as a receptor. Until recently, the presumed lack of this receptor in human airways was believed to constitute an efficient barrier to avian influenza A virus infection of humans. Recent zoonotic outbreaks of avian influenza A virus have triggered researchers to analyse tissue distribution of sialic acid in further detail. Here, we review and extend the current knowledge about sialic acid distribution in human tissues, and discuss viruses with ocular tropism and their preference for ,2,3-linked sialic acid. [source]


    Expression of ,-defensin-1 in chimpanzee (Pan troglodytes) airways

    JOURNAL OF MEDICAL PRIMATOLOGY, Issue 5 2000
    Louise A. Duits
    In human airways, ,-defensins function in the elimination of various pathogens. They have been identified in a wide range of species. Here we report the identification and expression of chimpanzee ,-defensin-1 (cBD1), which is a homolog of human ,-defensin-1, in chimpanzee airways and skin. The cBD1 cDNA sequence differs by only one synonymous nucleotide substitution compared to the human cDNA sequence. In situ hybridization revealed that in lung tissue beside alveolar macrophages also airway epithelial cells, endothelial cells and type II pneumocytes express cBD1 mRNA. In skin, cBD1 mRNA was expressed in keratinocytes and endothelial cells. Together, these results show similarity in structure and expression pattern and perhaps in function. [source]


    Nod1, Nod2 and Nalp3 receptors, new potential targets in treatment of allergic rhinitis?

    ALLERGY, Issue 10 2010
    J. Bogefors
    To cite this article: Bogefors J, Rydberg C, Uddman R, Fransson M, Månsson A, Benson M, Adner M, Cardell LO. Nod1, Nod2 and Nalp3 receptors, new potential targets in treatment of allergic rhinitis? Allergy 2010; 65: 1222,1226. Abstract Background:, Recently, a new set of pattern-recognition receptors, the nucleotide-binding oligomerization domain (Nod)-like receptors (NLRs), have emerged. Their activation, either by allergens or microbes, triggers an inflammatory response. The knowledge about NLRs in human airways is limited. Aim of the study:, To investigate presence of NLRs in the human nose of healthy individuals and patients with intermittent allergic rhinitis outside and during pollen season. Methods:, The expression of Nod1, Nod2, and Nalp3 in nasal biopsies was determined with real-time RT-PCR and immunohistochemistry. Cultured primary human nasal epithelial cells (HNECs) were analyzed using real-time RT-PCR and flow cytometry to further verify the presence of NLRs in the epithelium. Results:, Immunohistochemical analysis revealed presence of Nod1, Nod2, and Nalp3 in the nasal epithelium. This was corroborated in cultured HNECs. Patients suffering from symptomatic allergic rhinitis exhibited lower Nod1 and Nalp3 mRNA levels than both controls and patients during pollen season. Nod2 expression was found in all specimens tested, but no differences were seen between the three groups. Conclusion:, Nod1, Nod2, and Nalp3 receptors were found to be present in the human nose. The expression of Nod1 and Nalp3 were down-regulated during pollen season among patients with allergic rhinitis. This opens up for new insights and novel therapeutic strategies in inflammatory airway disease. [source]