Humus Horizons (humus + horizon)

Distribution by Scientific Domains


Selected Abstracts


Can management compensate for atmospheric nutrient deposition in heathland ecosystems?

JOURNAL OF APPLIED ECOLOGY, Issue 4 2006
WERNER HÄRDTLE
Summary 1Atmospheric nutrient deposition has contributed to widespread changes in heathlands throughout Europe. As a consequence, management is now being considered as a potential tool with which to compensate for increased nutrient loads. Currently, only limited information is available on the extent to which management measures could compensate for atmospheric nutrient deposition. We hypothesized that low-intensity management measures are not sufficient to counterbalance current nutrient inputs, particularly of nitrogen (N). 2In order to improve heathland management schemes, we evaluated the effectiveness of different management measures in reducing the impact of ongoing atmospheric nutrient loads. We compared the effects of mowing, prescribed burning (low-intensity management) and sod-cutting (high-intensity management) on heathland nutrient budgets [N, calcium (Ca), potassium (K), magnesium (Mg) and phosphorus (P)] in the Lueneburg Heath nature reserve (north-west Germany). Nutrient balances were calculated by analysing the present-day input, the output as a result of the removal of biomass/humus horizons, and changes in leaching rates. 3Nutrient losses by increased leaching following management measures were negligible compared with nutrient losses caused by the removal of above-ground biomass or humus horizons. The total quantities of nutrients removed by sod-cutting were equivalent to between 37 and 176 years of atmospheric input (for N, 89 years). 4In contrast, the quantities of N removed by mowing and prescribed burning were equivalent to only 5 years of atmospheric input. Thus, heathlands subjected to such treatments will accumulate N in the long term. In addition, output,input ratios for phosphorus (P) exceeded those for N in the mowing and sod-cutting experiments. It is therefore likely that heathlands currently (co-) limited by N will shift to being more P-limited in the long term. This will promote species that are well adapted to P-limited sites (e.g. Molinia caerulea). 5Synthesis and applications. This study shows that low-intensity management cannot compensate for atmospheric N loads in the long term. Consequently, high-intensity management measures are an indispensable tool in preserving a long-term balanced N budget in heathlands. In order to maintain a diverse structure, managers need to combine low- and high-intensity management measures. Prescribed burning proved to be the best means of avoiding an increasing P shortage, because this measure causes very low P outputs. [source]


Chernozem,Soil of the Year 2005

JOURNAL OF PLANT NUTRITION AND SOIL SCIENCE, Issue 6 2005
Manfred Altermann
Abstract The proclamation of the "Soil of the Year" was made for the first time in Germany in 2005 on occasion of the World Soil Day. Chernozems were selected for this purpose. In this paper an overview of these groups of soils is given. Chernozems are concentrated in the drought region of Central Germany. A standard profile from the core area of Chernozems developed from loess is presented with comprehensive laboratory analysis. Chernozems developed primarily upon carbonatic loess substrates under summer-dry climatic conditions in an open park-like landscape with isolated forest stands. The development of Chernozems began as early as the late glacial period, and they were fully developed by the Atlantikum age. The far-reaching, uniformly thick humus horizons indicate substrate differences in the loess cover, which are partly the result of bioturbation. Within Germany, Chernozems and Chernozem-like soils make up approx. 3% of the surface area and 5% (approx. 11,000 km2) of the arable land. The results of the Static Fertilization Experiment in Bad Lauchstädt, founded in 1902, clarify the high value of Chernozem for biomass production and the environment. Each loss due to erosion or decrease in surface area reduces the fulfillment of soil ecological functions of the soils and is comparable to a loss of animal and plant species. Therefore, soil scientists and the results of soil research must be more comprehensively implemented for soil preservation, protection, and politics. For acceptance of these goals among the general public and the political-decision makers, the campaign "Soil of the Year" should give some thought-provoking impulses. Schwarzerde , Boden des Jahres 2005 Anlässlich des Weltbodentages wurde in Deutschland für 2005 mit der Schwarzerde erstmalig ein ,Boden des Jahres" proklamiert. Damit soll in der Bevölkerung und bei politischen Entscheidungsträgern ein stärkeres Bewusstsein für den Boden und ein höheres Engagement für den Bodenschutz angeregt werden. Im Beitrag wird ein Überblick über diese Bodengruppe gegeben und ein Standardprofil aus dem Kerngebiet der Schwarzerden aus Löss (Mitteldeutsches Trockengebiet) mit umfassenden Laboranalysen exemplarisch präsentiert. Schwarzerden entwickelten sich vorwiegend auf kalkreichen Lössen unter sommertrockenen Klimabedingungen in einer offenen parkähnlichen Landschaft mit Waldinseln. Die Entstehung der Schwarzerden setzte bereits im Spätglazial ein, und im Atlantikum waren sie voll entwickelt. Die weiträumig gleiche Mächtigkeit der Humushorizonte zeichnet primäre Substratunterschiede in der Lössdecke nach; sie sind nicht nur das Ergebnis einer Bioturbation. In Deutschland nehmen die Schwarzerden und schwarzerdeähnlichen Böden etwa 3 % der Bodenfläche bzw. 5 % (ca. 11.000 km2) der landwirtschaftlichen Nutzfläche ein. Die Ergebnisse des seit 1902 bestehenden Statischen Düngungsversuchs Bad Lauchstädt verdeutlichen den hohen Wert der Schwarzerden für Biomasseproduktion und Umwelt. Jeder Verlust durch Erosion oder Flächenentzug mindert die Erfüllung ökologischer Funktionen der Böden und ist dem Artenverlust von Tieren und Pflanzen gleichzustellen. In der Bodenpolitik müssen deshalb die Ergebnisse der Bodenforschung zum Erhalt und Schutz unserer Böden umfassender als bisher umgesetzt und Bodenwissenschaftler stärker in politische Entscheidungen eingebunden werden. Für die Akzeptanz und Umsetzung dieser Ziele in der Öffentlichkeit soll der ,Boden des Jahres" Impulse geben. [source]


Temporal and spatial variability in soil food web structure

OIKOS, Issue 11 2007
Matty P. Berg
Heterogeneity is a prominent feature of most ecosystems. As a result of environmental heterogeneity the distribution of many soil organisms shows a temporal as well as horizontal and vertical spatial patterning. In spite of this, food webs are usually portrayed as static networks with highly aggregated trophic groups over broader scales of time and space. The variability in food web structure and its consequences have seldom been examined. Using data from a Scots pine forest soil in the Netherlands, we explored (1) the temporal and spatial variability of a detrital food web and its components, (2) the effect of taxonomic resolution on the perception of variability over time and across space, and (3) the importance of organic matter quality as an explanatory factor for variability in food web composition. Compositional variability, expressed using the Bray-Curtis similarity index, was measured over 2.5 years using a stratified litterbag design with three organic horizons per litterbag set. Variability in community composition and organic matter degradation increased over time in the litter horizon only. Seasonal variation in community composition was larger than variation between samples from the same season in different years. Horizontal spatial variability in community composition and organic matter degradation was relatively low, with no increase in variability with increasing distance between samples. Vertically, communities and organic matter degradation was more different between the non-adjacent litter and humus horizons than between adjacent layers. These findings imply that soil food webs, at least in temperate forest plantations, are more variable than is currently appreciated in experiments and model studies, and that organic matter turnover might be an important factor explaining variability in community composition. Species composition was more variable than functional group composition, which implies that aggregated food webs will seem less sensitive to local temporal and spatial changes than they in fact are. [source]