Anopheline Mosquitoes (anopheline + mosquito)

Distribution by Scientific Domains


Selected Abstracts


Flying vaccinator; a transgenic mosquito delivers a Leishmania vaccine via blood feeding

INSECT MOLECULAR BIOLOGY, Issue 3 2010
D. S. Yamamoto
Abstract ,Flying vaccinator' is the concept of using genetically engineered hematophagous insects to deliver vaccines. Here we show the generation of a transgenic anopheline mosquito that expresses the Leishmania vaccine candidate, SP15, fused to monomeric red fluorescent protein (mDsRed) in its salivary glands. Importantly, mice bitten repeatedly by the transgenic mosquitoes raised anti-SP15 antibodies, indicating delivery of SP15 via blood feeding with its immunogenicity intact. Thus, this technology makes possible the generation of transgenic mosquitoes that match the original concept of a ,flying vaccinator'. However, medical safety issues and concerns about informed consent mitigate the use of the ,flying vaccinator' as a method to deliver vaccines. We propose that this expression system could be applied to elucidate saliva,malaria sporozoite interactions. [source]


cDNA cloning, functional expression and characterization of kynurenine 3-hydroxylase of Anopheles stephensi (Diptera: Culicidae)

INSECT MOLECULAR BIOLOGY, Issue 5 2002
M. Hirai
Abstract Kynurenine 3-hydroxylase (K3H) is a NADPH-dependent flavin monooxygenase involved in the tryptophan pathway. Xanthurenic acid (XA) is a metabolite of this pathway and has recently been identified as a gamete activating factor (GAF) of the malarial parasite. We cloned K3H cDNA from Anopheles stephensi (AsK3H), because anopheline mosquitoes are a vector of the human malaria parasite, Plasmodium falciparum and the catalytic function of AsK3H in XA production. Recombinant AsK3H protein was expressed in Sf-9 cells using the baculovirus system and its enzymatic properties were characterized. The specific activities of crude cell lysate and affinity purified protein were 94.9 6.2 and 865.6 10.5 nmol/min/mg protein, respectively. The optimum pH of AsK3H was 7.0. Analysis of AsK3H gene expression using RT-PCR revealed that AsK3H was constitutively expressed in egg, larva, pupa and adult. [source]


Molecular characterization of a prophenoloxidase cDNA from the malaria mosquito Anopheles stephensi

INSECT MOLECULAR BIOLOGY, Issue 2 2000
L. Cui
Abstract Some refractory anopheline mosquitoes are capable of killing Plasmodium, the causative agent of malaria, by melanotic encapsulation of invading ookinetes. Phenoloxidase (PO) appears to be involved in the formation of melanin and toxic metabolites in the surrounding capsule. A cDNA encoding Anopheles stephensi prophenoloxidase (Ans-proPO) was isolated from a cDNA library screened with an amplimer produced by reverse transcriptase polymerase chain reaction (RT-PCR) with degenerate primers designed against conserved proPO sequences. The 2.4-kb-long cDNA has a 2058 bp open reading frame encoding Ans-proPO of 686 amino acids. The deduced amino acid sequence shows significant homology to other insect proPO sequences especially at the two putative copper-binding domains. In A. stephensi, Ans-proPO expression was detected in larval, pupal and adult stages. The Ans-proPO mRNA was detected by RT-PCR and in situ hybridization in haemocytes, fat body and epidermis of adult female mosquitoes. A low level of expression was detected in the ovaries, whereas no expression was detected in the midguts. Semi-quantitative RT-PCR analysis of Ans-proPO mRNA showed that its expression was similar in adult female heads, thoraxes and abdomens. No change in the level of Ans-proPO expression was found in adult females after blood feeding, bacterial challenge or Plasmodium berghei infection. However, elevated PO activity was detected in P. berghei -infected mosquitoes, suggesting that in non-selected permissive mosquitoes PO may be involved in limiting parasite infection. Genomic Southern blot and immunoblots suggest the presence of more than one proPO gene in the A. stephensi genome, which is consistent with the findings in other Diptera and Lepidoptera species. The greatest similarity in sequence and expression profile between Ans-proPO and A. gambiae proPO6 suggests that they might be homologues. Our results demonstrate that Ans-proPO is constitutively expressed through different developmental stages and under different physiological conditions, implying that other factors in the proPO activation cascade regulate melanotic encapsulation. [source]


Could insecticide-treated cattle reduce Afrotropical malaria transmission?

MEDICAL AND VETERINARY ENTOMOLOGY, Issue 4 2004
Effects of deltamethrin-treated Zebu on Anopheles arabiensis behaviour, survival in Ethiopia
Abstract.,Anopheles arabiensis Patton (Diptera: Culicidae) is the most widespread vector of malaria in the Afrotropical Region. Because An. arabiensis feeds readily on cattle as well as humans, the insecticide-treatment of cattle , as employed to control tsetse (Diptera: Glossinidae) and ticks (Acari: Ixodidae) , might simultaneously affect the malaria vectorial capacity of this mosquito. Therefore, we conducted field experiments in southern Ethiopia to establish whether Zebu cattle (Bos indicus L.) treated with a pour-on pyrethroid formulation of 1% deltamethrin, widely used to control ticks and tsetse, would be effective against An. arabiensis or cause the female mosquitoes to feed more frequently on humans, due to behavioural avoidance of insecticide-treated cattle. Contact bioassays (3 min exposure) showed that the insecticide remained effective for about 1 month (kill rate > 50%) against mosquitoes feeding on the flanks of treated cattle. A novel behavioural assay demonstrated that An. arabiensis readily fed on insecticide-treated cattle and were not deflected to human hosts in the presence of treated cattle. DNA-fingerprinting of bloodmeals revealed that An. arabiensis naturally feeds most frequently on older animals, consistent with the established practice of applying insecticide only to older cattle, while allowing younger untreated animals to gain immunity against infections transmitted by ticks. These encouraging results were tempered by finding that > 90% of An. arabiensis, An. pharoensis and An. tenebrosus females feed on the legs of cattle, farthest from the site of pour-on application along the animal's back and where the treatment may be least residual due to weathering. Observations of mosquitoes feeding naturally on insecticide-treated cattle showed that the majority of wild female anophelines alighted on the host animal for less than 1 min to feed, with significantly shorter mean duration of feeding bouts on insecticide-treated animals, and the effective life of the insecticide was only 1 week. Thus the monthly application of deltamethrin to cattle, typically used to control tsetse and ticks, is unlikely to be effective against An. arabiensis populations or their vectorial capacity. Even so, it seems likely that far greater impact on anopheline mosquitoes could be achieved by applying insecticide selectively to the legs of cattle. [source]


Motility and infectivity of Plasmodium berghei sporozoites expressing avian Plasmodium gallinaceum circumsporozoite protein

CELLULAR MICROBIOLOGY, Issue 5 2005
Rita Tewari
Summary Avian and rodent malaria sporozoites selectively invade different vertebrate cell types, namely macrophages and hepatocytes, and develop in distantly related vector species. To investigate the role of the circumsporozoite (CS) protein in determining parasite survival in different vector species and vertebrate host cell types, we replaced the endogenous CS protein gene of the rodent malaria parasite Plasmodium berghei with that of the avian parasite P. gallinaceum and control rodent parasite P. yoelii. In anopheline mosquitoes, P. berghei parasites carrying P. gallinaceum and rodent parasite P. yoelii CS protein gene developed into oocysts and sporozoites. Plasmodium gallinaceum CS expressing transgenic sporozoites, although motile, failed to invade mosquito salivary glands and to infect mice, which suggests that motility alone is not sufficient for invasion. Notably, a percentage of infected Anopheles stephensi mosquitoes showed melanotic encapsulation of late stage oocysts. This was not observed in control infections or in A. gambiae infections. These findings shed new light on the role of the CS protein in the interaction of the parasite with both the mosquito vector and the rodent host. [source]