Anomalous Differences (anomalous + difference)

Distribution by Scientific Domains

Selected Abstracts

Phasing possibilities using different wavelengths with a xenon derivative

Santosh Panjikar
Xenon derivatives are generally expected to be isomorphous with the native; however, the K - and L -absorption edges are not easily accessible on most synchrotron beamlines, which might limit their usefulness in phase determination. Various phasing procedures for xenon-derivatized porcine pancreatic elastase have been investigated using data sets measured at three generally accessible wavelengths. The importance of highly redundant data in measuring precise anomalous differences is highlighted and it is shown that, after such measurements, a single isomorphous replacement anomalous scattering (SIRAS) procedure yields a better phase set than those generated by single anomalous scattering (SAS) or multiwavelength anomalous diffraction (MAD) procedures. [source]

Determination of zinc incorporation in the Zn-substituted gallophosphate ZnULM-5 by multiple wavelength anomalous dispersion techniques

M. Helliwell
The location of isomorphously substituted zinc over eight crystallographically different gallium sites has been determined in a single-crystal study of the gallophosphate ZnULM-5, GaZn(PO4)14(HPO4)2(OH)2F7, [H3N{CH2}6NH3]4, 6H2O, in an 11 wavelength experiment, using data from Station 9.8, SRS Daresbury. The measurement of datasets around the K edges of both Ga and Zn, as well as two reference datasets away from each absorption edge, was utilized to selectively exploit dispersive differences of each metal atom type in turn, which allowed the major sites of Zn incorporation to be identified as the metal 1 and 3 sites, M1 and M3. The preferential substitution of Zn at these sites probably arises because they are located in double four-ring (D4R) building units which can relax to accommodate the incorporation of hetero atoms. As the crystal is non-centrosymmetric, with space group P21212, it was also possible to use anomalous differences to corroborate the results obtained from the dispersive differences. These results were obtained firstly from difference Fourier maps, calculated using a phase set from the refined structure from data measured at the Zr K edge. Also, refined dispersive and anomalous occupancies, on an absolute scale, could be obtained using the program MLPHARE, allowing estimates for the Zn incorporation of approximately 22 and 18 at. % at the M1 and M3 sites to be obtained. In addition, f, and f,, values for Ga and Zn at each wavelength could be estimated both from MLPHARE results, and by refinement in JANA2006. The fully quantitative determinations of the dispersive and anomalous coefficients for Ga and Zn at each wavelength, as well as metal atom occupancies over the eight metal atom sites made use of the CCP4's MLPHARE program as well as SHELXL and JANA2006. The results by these methods agree closely, and JANA2006 allowed the ready determination of standard uncertainties on the occupancy parameters, which were for M1 and M3, 20.6,(3) and 17.2,(3),at %, respectively. [source]

What happens when the signs of anomalous differences or the handedness of substructure are inverted?

Jiawei Wang
Proper solution of a macromolecular crystal structure based on anomalous scattering and/or isomorphous differences requires that the anomalous differences in reflection amplitudes be measured properly and that the correct enantiomer of the substructure be selected. If this information is wrong then the resulting electron-density maps will not show the correct structural features, but the reflection phases and map features will be related to the correct ones in a specific way. This text aims to explain how misinterpretation of the Bijvoet differences or of the substructure affects the resulting phases and electron-density maps. [source]

Structure determination of a novel protein by sulfur SAD using chromium radiation in combination with a new crystal-mounting method

Yu Kitago
A novel and easy crystal-mounting technique was developed for the sulfur SAD method using Cr,K, radiation (2.29,). Using this technique, the cryo-buffer and cryoloop around the protein crystal can be removed before data collection in order to eliminate their X-ray absorption. The superiority and reproducibility of the data sets with this mounting technique were demonstrated using tetragonal hen egg-white lysozyme crystals. The structure of a novel protein, PH1109, from Pyrococcus horikoshii OT3 was solved using this technique. At the wavelength of Cr,K, radiation, the anomalous signal ,|,F|,/,|F|, of PH1109 is expected to be 1.72% as this protein of 144 residues includes four methionines and two cysteines. Sulfur SAD phasing was performed using SHELXD and SHELXE. In the case of the data set obtained using this novel crystal-mounting technique, 54.9% of all residues were built with side chains automatically by RESOLVE. On the other hand, only 16.0% were built with side chains for the data set collected using the standard cryoloop. These results indicated that this crystal-mounting technique was superior to the standard loop-mounting method for the measurement of small anomalous differences at longer wavelength and yielded better results in sulfur-substructure solution and initial phasing. The present study demonstrates that the sulfur SAD method with a chromium source becomes enhanced and more practical for macromolecular structure determination using the new crystal-mounting technique. [source]

New ways of looking at experimental phasing

Randy J. Read
In the original work by Blow and Crick, experimental phasing was formulated as a least-squares problem. For good data on good derivatives this approach works reasonably well, but we now attempt to extract more information from poorer data than in the past. As in many other crystallographic problems, the assumptions underlying the use of least squares for phasing are not satisfied, particularly for poor derivatives. The introduction of maximum likelihood (and more powerful computers) has led to substantial improvements. For computational convenience, these new methods still make many assumptions about the independence of different measurements and sources of error. A more general formulation for the probability distributions underlying likelihood-based methods for both experimental phasing and molecular-replacement phasing is reviewed. In the new formulation, all the structure factors associated with a particular hkl are considered to be related by a complex multivariate normal distribution. When it is assumed that certain errors are independent, the general formulation reduces to current likelihood targets. However, the new formulation makes the necessary assumptions more explicit and points the way to improving phasing using both isomorphous and anomalous differences. [source]