Anodic Alumina (anodic + alumina)

Distribution by Scientific Domains


Selected Abstracts


Rf glow discharge optical emission spectrometry for the analysis of arrays of Ni nanowires in nanoporous alumina and titania membranes

PHYSICA STATUS SOLIDI (A) APPLICATIONS AND MATERIALS SCIENCE, Issue 6 2006
V. M. Prida
Abstract Anodic alumina (Al2O3) and titania (TiO2) nanoporous oxide membranes are among the most widely studied self-organized nanopore templates, formed by uniform and well aligned arrays of synthetized nanometric pores or tubes. Here, we perform a comparative study of the depth profiling analysis in self-ordered alumina and titania nanoporous membrane templates by means of the radiofrequency glow discharge coupled to optical emission spectrometry (rf-GD-OES) technique. The densely packed columnar arrays of hexagonally self-ordered nanoporous alumina membranes investigated, with an average inner pore diameter of 35 nm and 105 nm interspacing, give an uniform thickness pore length about more than 5 m, depending on the anodization time. Meanwhile, the analysis of the anodized titania nanotubes, with an average inner pore diameter of 100 nm and 40 nm wall thickness, shown to be about 300 nm in length. Each type of membranes were also studied in both cases, when the nanopores were empty and after filling with electrodeposited Ni. The direct analysis by rf-GD-OES reveals the ability of this technique to control the quality of these so synthesized nanocomposites formed by electrodeposited Ni nanowires into the alumina and titania nanoporous templates. ( 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


Template-Directed Liquid ALD Growth of TiO2 Nanotube Arrays: Properties and Potential in Photovoltaic Devices

ADVANCED FUNCTIONAL MATERIALS, Issue 9 2010
Thelese R. B. Foong
Abstract Dense and well-aligned arrays of TiO2 nanotubes extending from various substrates are successfully fabricated via a new liquid-phase atomic layer deposition (LALD) in nanoporous anodic alumina (AAO) templates followed by alumina dissolution. The facile and versatile process circumvents the need for vacuum conditions critical in traditional gas-phase ALD and yet confers ALD-like deposition rates of 1.6,2.2, cycle,1, rendering smooth conformal nanotube walls that surpass those achievable by sol,gel and Ti-anodizing techniques. The nanotube dimensions can be tuned, with most robust structures being 150,400,nm tall, 60,70,nm in diameter with 5,20,nm thick walls. The viability of TiO2 nanotube arrays deposited on indium tin oxide (ITO),glass electrodes for application in model hybrid poly(3-hexylthiophene) (P3HT):TiO2 solar cells is studied. The results achieved provide platforms and research directions for further advancements. [source]


Controlled Fabrication of Multitiered Three-Dimensional Nanostructures in Porous Alumina,

ADVANCED FUNCTIONAL MATERIALS, Issue 14 2008
Audrey Yoke Yee Ho
Abstract We present the fabrication of multitiered branched porous anodic alumina (PAA) substrates consisting of an array of pores branching into smaller pores in succeeding tiers. The tiered three-dimensional structure is realized by sequentially stepping down the anodization potential while etching of the barrier layer is performed after each step. We establish the key processing parameters that define the tiered porous structure through systematically designed experiments. The characterization of the branched PAA structures reveals that, owing to constriction, the ratio of interpore distance to the anodization potential is smaller than that for pristine films. This ratio varies from 1.8 to 1.3,nm,V,1 depending on the size of the preceding pores and the succeeding tier anodization potential. Contact angle measurements show that the multitiered branched PAA structures exhibit a marked increased in hydrophilicity over two-dimensional PAA films. [source]


Highly Stable Nickel Hexacyanoferrate Nanotubes for Electrically Switched Ion Exchange,

ADVANCED FUNCTIONAL MATERIALS, Issue 15 2007
W. Chen
Abstract Nickel hexacyanoferrate (NiHCF) nanotubes are fabricated by an electrokinetic method based on the distinct surface properties of porous anodic alumina. By this method, nanotubes can be formed rapidly with the morphologies faithfully replicating the nanopores in the template. The prepared nanotubes were carefully characterized using SEM and TEM. Results from IR, UV, EDX, and electrochemical measurements show that the NiHCF nanotubes exist only in the form of K2Ni[Fe(CN)6]. Because of this single composition and unique nanostructure, NiHCF nanotubes show excellently stable cesium-selective ion-exchange ability. The capacity for electrodes modified with NiHCF nanotubes after 500,potential cycles retains 95.3,% of its initial value. Even after 1500 and 3000 cycles, the NiHCF nanotubes still retain 92.2,% and 82.9,%, respectively, of their ion-exchange capacity. [source]


Formation of Thick Porous Anodic Alumina Films and Nanowire Arrays on Silicon Wafers and Glass,

ADVANCED FUNCTIONAL MATERIALS, Issue 8 2003
O. Rabin
Abstract A method for the fabrication of thick films of porous anodic alumina on rigid substrates is described. The anodic alumina film was generated by the anodization of an aluminum film evaporated on the substrate. The morphology of the barrier layer between the porous film and the substrate was different from that of anodic films grown on aluminum substrates. The removal of the barrier layer and the electrochemical growth of nanowires within the ordered pores were accomplished without the need to remove the anodic film from the substrate. We fabricated porous anodic alumina samples over large areas (up to 70 cm2), and deposited in them nanowire arrays of various materials. Long nanowires were obtained with lengths of at least 9 ,m and aspect ratios as high as 300. Due to their mechanical robustness and the built-in contact between the conducting substrate and the nanowires, the structures were useful for electrical transport measurements on the arrays. The method was also demonstrated on patterned and non-planar substrates, further expanding the range of applications of these porous alumina and nanowire assemblies. [source]


Porous anodic alumina microreactors for production of hydrogen from ammonia

AICHE JOURNAL, Issue 4 2004
Jason C. Ganley
Abstract The synthesis and properties are described of a ruthenium-impregnated anodic aluminum catalyst for use in microreactors for the production of hydrogen from an ammonia feed. The catalyst structure was synthesized using microelectric discharge machining to create a series of 300 300-,m posts on an aluminum substrate. The posts were anodized to yield a 60-,m covering of anodic alumina, with an average surface area of 16 m2/gm and an average pore size of 50 nm. Ruthenium metal was dispersed on the alumina using conventional wet impregnation. A 0.9 0.9-cm reactor containing 250 posts decomposed 95% of anhydrous ammonia at 650C to yield 15 sccm of hydrogen. A possible application of these microreactor fabrication methods is hydrogen generation for fuel cells in mobile power production. 2004 American Institute of Chemical Engineers AIChE J, 50:829,834, 2004 [source]


Porous anodic alumina thin films on Si: interface characterization

PHYSICA STATUS SOLIDI (C) - CURRENT TOPICS IN SOLID STATE PHYSICS, Issue 12 2008
V. Gianneta
Abstract Porous anodic alumina (PAA) thin films (thickness , 50nm) were fabricated on Si by anodization of thin Al films under constant voltage of 20 V in sulphuric acid aqueous solution. The films exhibit cylindrical vertical pores of diameter , 13,15 nm, arranged in hexagonal close packed structure. Electrochemical oxidation of the Si substrate through PAA, used as masking layer with openings in the pores, resulted in the formation of SiO2 dots at each pore tip. Two different kinds of films, namely with or without SiO2 dots at pore tips, were fabricated. In order to characterize the electrical quality of the interface of PAA thin films with Si, C-V and G-V measurements were performed on Metal-Insulator-Semiconductor (MIS) structures with Al metallization. The measurements were carried out in the voltage range +1.0 V to ,3.0 V in steps of 0.05 V and in the frequency range 1 MHz to 100 Hz. The typical form of C-V and G-V curves of a MIS structure was obtained. In order to determine the interface trap density Dit, C-f and G-f measurements were performed as a function of the applied gate voltage in the depletion region. Dit was evaluated following the Conductance Method (E. H. Nicollian, and J. R. Brews, MOS Physics and Technology (J. Wiley & Sons, New York, 1982), p. 222 [1]). Both types of samples exhibit values of Dit in the order of 1011 eV,1cm,2. ( 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


Real-Time Monitoring of Mass-Transport-Related Enzymatic Reaction Kinetics in a Nanochannel-Array Reactor

CHEMISTRY - A EUROPEAN JOURNAL, Issue 33 2010
Su-Juan Li
Abstract To understand the fundamentals of enzymatic reactions confined in micro-/nanosystems, the construction of a small enzyme reactor coupled with an integrated real-time detection system for monitoring the kinetic information is a significant challenge. Nano-enzyme array reactors were fabricated by covalently linking enzymes to the inner channels of a porous anodic alumina (PAA) membrane. The mechanical stability of this nanodevice enables us to integrate an electrochemical detector for the real-time monitoring of the formation of the enzyme reaction product by sputtering a thin Pt film on one side of the PAA membrane. Because the enzymatic reaction is confined in a limited nanospace, the mass transport of the substrate would influence the reaction kinetics considerably. Therefore, the oxidation of glucose by dissolved oxygen catalyzed by immobilized glucose oxidase was used as a model to investigate the mass-transport-related enzymatic reaction kinetics in confined nanospaces. The activity and stability of the enzyme immobilized in the nanochannels was enhanced. In this nano-enzyme reactor, the enzymatic reaction was controlled by mass transport if the flux was low. With an increase in the flux (e.g., >50,,L,min,1), the enzymatic reaction kinetics became the rate-determining step. This change resulted in the decrease in the conversion efficiency of the nano-enzyme reactor and the apparent Michaelis,Menten constant with an increase in substrate flux. This nanodevice integrated with an electrochemical detector could help to understand the fundamentals of enzymatic reactions confined in nanospaces and provide a platform for the design of highly efficient enzyme reactors. In addition, we believe that such nanodevices will find widespread applications in biosensing, drug screening, and biochemical synthesis. [source]